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CHAPTER 1.  INTRODUCTION 

The imposition of a sinusoidal oscillation, of amplitude a and 

angular frequency u, on the mean flow through a circular pipe causes a 

periodically varying pressure and velocity field.  If the amplitude is 

small enough a linear response is obtained for which 

dx  dx 

u = u(y) + a 

dp 
dx cos   (wt), 

) u(y) cos   (oit + e   (y)). 

(1.1) 

(1.2) 

with X being the distance in the flow direction, y, the distance from 

the wall and t, the time.  The time mean pressure gradient and the time 

mean velocity of the undisturbed flow are designated by -r^ and u(y); and 

the amplitudes of the oscillations, by a 
d£ 
dx and a u(y) These 

oscillations in the velocity field give rise to oscillations in the 

shear stress at the wall. 

T = T + a 
w   w   o w 

cos (a)t + 0  ) , 
T 
W 

(1.3) 

with 8  = lim 9 (y).  This thesis presents the results of experiments 
w  y-K) 

with a fully developed pipe flow in which 

d£ 
dx 

w and 9  are related to 
T 
W 

The experiments were conducted at high enough frequencies so that 

over most of the flow field inertia is dominant; that is. 

3u ^ _ 3£ 
at 3x • (1.4) 

A solution of (1.4) for a sinusoidally varying pressure gradient gives 



A dp 
top u = -^ , (1.5) 

and 

3^=-f (1.6) 

Equation (1.5) reveals that, for this high frequncy range, even small 

oscillations in the volumetric flow can cause oscillations in the 

pressure gradient many times larger than the mean pressure gradient. 

Close to the wall turbulent and viscous stresses become important 

so that u is related to the pressure gradient through the eqation 

2     (t) 
3u    3£ ^  3 u , ^J2Z. M 7^ 
9t    3x   ^ - 2   3y 

3y 

The principal theoretical problem in predicting how the oscillations 

in the wall shear stress are related to the oscillations in the 

pressure gradient is the determination of how an oscillating pressure 

gradient affects the turbulence.  The experiments therefore provide a 

test of closure methods that predict x   close to a wall. 

The motivation for this work has come from studies of the wall shear 

stress variation along a solid wavy surface over which a turbulent fluid 

is flowing.  It was found, in these experiments, that the amplitude and 

phase angle characterizing the periodic variation of the shear stress 

along the wavy surface depend on the wave number, a = 2TT/\,  and that 

this dependency could be scaled by using the kinematic viscosity, v, 

JL 

and the friction velocity, u .  Of most interest was the discovery of 

a sharp change in phase angle with increasing dimensionless wave number 

at a"*" = .0005 ~ .001. 



The interpretation of these results depends on the prediction of 

the wave-induced variation of the Reynolds stress in the viscous wall 

region (0 ^ y ^ 40).  The turbulence modeling differs from that for flow 

over a flat plate in that the waves induce a periodic variation of the 

streamline curvature and of the pressure gradient at the surface. 

Thorsness, Morrisroe and Hanratty (1978) and Abrams and Hanratty (1984) 

have suggested that the observed behavior of the phase angle is primarily 

associated with the influence of wave-induced pressure gradient.  They 

argue that at small a an equilibrium situation exists whereby the flow 

behaves similarly to that observed in gradually expanding or converging 

channels.  Regions of the wave surface with a favorable pressure gradient 

experience a damping of the turbulence in the viscous wall region; regions 

with an unfavorable pressure gradient experience an enhancement of the 

turbulence.  As a  increases the pressure gradient varies so rapidly 

along the wave surface that the turbulence in the viscous wall region 

does not respond immediately.  There is a relaxation from an equilibrium 

turbulence to a frozen turbulence, manifested by the sharp change in the 

phase angle with increasing a . 

The principal goal of the present experiments was to investigate 

the above interpretation by carrying out studies of the influence of a 

rapidly varying pressure gradient on the behavior of the viscous wall 

region, without having to deal with additional complications associated 

with streamline curvature.  Of particular interest is the determination 

of whether the variation of 6  with w  shows the same relaxation 
T 
w 

phenomenon observed for flow over wavy surfaces. 

In order to meet the above objective it was necessary to design the 

experiment so that to was of the same order as the median frequency of 



the turbulent velocity fluctuations in the vicinity of the wall 

(= .01 X 2u).  At the same time, it was desirable to avoid the use of 

imposed oscillations of unrealistically high frequency.  This was done 

by using a system which has low frequency turbulence; i.e., water flow 

in a 19.4 cm pipe.  Sinusoidal oscillations with frequencies of 0.325 Hz 

and 0.625 Hz were introduced into the system with a plunger type pump. 

The amplitudes of the oscillations were made small enough that the 

pressure gradient and wall shear stress varied sinusoidally with time. 

The shear stress variation at the wall was measured with electrochemical 

probes mounted flush with the wall.  It was not possible to design this 

experiment so that the frequency response of the probe did not have to 

be taken into account.  An advantage of using the electrochemical 

method is that an analytical, rather than an experimental, scheme can be 

used to correct for frequency response. 

A number of previous investigators have studied the influence of 

controlled flow oscillations on turbulent flows.  An excellent review 

has recently been presented by Carr (1981).  The work presented in this 

thesis differs in that attention is focused on the wall shear stress 

variation and on high values of o) .  Previous investigators have found 

that the influence of the oscillations on the mean velocity profile is 

small and that their effect on turbulence is felt principally in the 

region close to the wall.  For this reason, there exists a need for 

measurements of the wall shear stress oscillations.  In most previous 

studies accurate velocity measurements were not made close enough to 

the wall to determine the time varying velocity gradient at the wall. 

Recently, Tu and Ramaprian (1983) reported on direct measurements of 

the wall shear stress with flush mounted wall heat transfer probes. 



These were at values of oj too low to observe the relaxation phenomenon 

in which we are interested.  In addition, there are uncertainties 

about these results since no attempt was made to take into account the 

frequency response of the probe. 

The measurements of the velocity gradient at the wall in this study 

confirms previous findings by a number of researchers that the mean flow 

field is actually not affected by the imposed flow oscillation.  The 

measurements in this work have also verified the assumption that there 

exists a linear response of the wall shear stress to the imposition of 

a small amplitude flow oscillation.  Moreover, it is found that the 

relative phase and amplitude which characterize this response can be 

correlated by a single parameter w , which combines the effects of 

frequency and Reynolds number in the range of variables studied. 

The most striking feature of the results is a relaxation effect, 

similar to what has been observed for flow over a wavy surface, whereby 

the phase angle characterizing the temporal variation of the wall shear 

stress undergoes a sharp change over a rather narrow range of u) .  At 

Oi) larger than the median frequency of the turbulence, there appears 

to be an interaction between the imposed flow oscillation and turbulence 

fluctuations in the viscous sublayer, which is not described by present 

theories of turbulence. 



CHAPTER 2.  LITERATURE SURVEY 

Unsteady laminar flows in simple cases were solved analytically 

or asjnnptotically.  These solutions are summarized by Schlichting (1979). 

G. Stokes (1851) and later Lord Rayleigh (1911) considered flow over 

an infinite flat plate which executes linear harmonic oscillations 

parallel to itself—Stokes second problem.  Th.Sexl (1930) and S. Uchida 

(1956) treated the case of flow through a pipe under the influence of a 

periodic pressure gradient.  An unique parameter Q. = J —    r was found 

to characterize periodic laminar flow in the pipe, where w is angular 

frequency, v, kinematic viscosity and r , radius of the pipe.  At very 

low values of U,   the velocity profile of the oscillation component is 

in phase with the imposed variation of pressure gradient and behaves 

like that in steady state flow with the same mean flow rate.  At very 

large values of ^,   the oscillation flow field moves like a solid body 

in the core region of the pipe and varies rapidly close to the wall. 

For this case the phase of the oscillation velocity lags of the pressure 

gradient by 90° in the center of the pipe, but only by 45° at the neigh- 

borhood of the wall.  This indicates that for high frequencies viscous 

effect plays an important role in the wall region and that the outer flow 

can be considered as inviscid. 

Because the complexities and difficulties encountered in experi- 

mental studies of unsteady turbulent flow, researches in this area 

were rarely seen in literature a decade ago.  Interest in this area 

has been growing rapidly in recent years.  Partially, this is because 

results from such studies are needed in solving many urgent engineering 

problems.  More importantly,this recent interest can be associated with 
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the development of instrumentation and the availability of new techniques 

of data acquisition and processing.  Researchers have been mainly con- 

centrated on three subjects:  Oscillating flow at transitional Reynolds 

number, turbulent boundary flow over flat plate under periodic exitation 

of free stream flow, and turbulent oscillating pipe flow. 

In this chapter, a brief survey of studies on these subjects will 

first be presented.  Then, studies in a relevant field, turbulent flow 

over wavy surfaces, will be discussed.  Finally, what has been learned 

from these studies, and what are still unclear or controversial points 

will be summarized. 

2.1 Oscillating Flow at Transitional Reynolds Numbers 

Experience with steady flows subjected to spatial pressure gradients 

has shown that pressure gradients can have a significant effect on the 

critical Reynolds number.  In an unsteady flow, one would intuitively 

expect that the effects of unsteadyness on the flow structure will be 

stronger on flows in the neighborhood of transition than on flows at 

very large Reynolds numbers.  This is because the transition process can 

be sensitive to the strong acceleration/deceleration occurring in the 

unsteady flow. 

Gerrard (1971) studied pulsating flow at a mean flow Reynolds number 

of 3370 in a pipe of diameter 3.81 cm with an amplitude of oscillation 

0.57 of mean and a period of 12.2 s.  A sheet of dye was produced by 

electrolysis from a fine wire stretched across the diameter.  Cine- 

photography was used to record the motion of dyes and to find the velocity 

profile.  The most significant information obtained from the experiment 

was that the flow was laminarized during the acceleration phase of flow 

cycle. 
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Ramaprian & Tu (1980) found a similar phenomenon in their experiments, 

in which oil flow was used in a circular pipe at a mean Reynolds number 

of about 2100.  Two frequencies (1.75 Hz and 0.057 Hz) were studied with 

an amplitude 30% of the mean flow.  Instantaneous velocities were measured 

by using laser-Doppler anemometry (LDA).  They observed that flow 

oscillation increased the critical Reynolds number and, under certain 

conditions, even brought about laminarization of the flow. 

Shemer & Wygnaski (1981) approached the problem differently.  They 

compared the responses of laminar and turbulent air flow to an imposed 

oscillation at the same mean Reynolds number 4,000.  The undisturbed 

flow was laminar, and turbulence was triggered artificially by inserting 

a cylinder into the pipe.  The hot wire anemometer was used to measure 

the instantaneous velocity.  They found that turbulent flow responded 

to an imposed pressure variation differently from laminar flow for the 

same Reynolds niomber and the same pressure variation.  They argued that 

the frequency parameter fl no longer controls the flow because the 

relevant viscosity is no longer v but turbulent eddy viscosity v , 

which is orders of magnitude larger than v.  The effective f2 is thus 

much lower.  They also observed a partial laminarization of the 

trubulent flow during the acceleration of the flow.  The time averaged 

Reynolds stress-u'v' and the phase averaged Reynolds stress -<u'v' > 

were measured with an x-wire.  It was observed that -u v' was indepen- 

dent of the flow oscillation and that the phase of -<u'v'> lagged 

behind the pressure variation. 

There have been some efforts to consider the stability of time 

periodic flows. Davis (1976) reviewed research works in this area. 

The term unstable for a basic periodic state is defined by Davis as 



a situation for which a disturbance experiences net growth over each 

modulation cycle.  A state for which every disturbance decays at every 

instant is defined as stable.  The most interesting result coming from 

these studies is that there may be a state which is neither unstable 

nor stable; i.e., the basic state is subject to a disturbance that grows 

during part of the cycle, that attains an appreciable amplitude, that 

decays during another part of the cycle.  This type flow is called 

transiently stable by Davis.  Both theoretical and experimental works 

indicate that Stokes layers are stable to small disturbances but are 

apparently unstable to disturbances of large amplitude.  For a fully 

developed pipe flow, Sarphaya (1966) found that the critical Reynolds 

number increases with increasing amplitude until it reaches a peak value, 

after which it falls to values below the critical Reynodls number for 

steady flow.  More works need to be done in this area. 

2.2 Periodic Turbulent Boundary Flow Over Flat Plate 

The first experimental study on periodic turbulent boundary flow 

over a flat plate was done by Karlsson in 1959.  Amplitudes of the 

sinusoidal oscillation up to 34% of the mean velocity and frequencies 

ranging from 0 to 48 cycles/sec were used in a boundary layer wind 

tunnel with zero pressure gradient.  The hot wire was used to measure 

the mean velocity, the amplitude of in-and out-of phase components 

of the first harmonic of the periodic oscillation, and the intensity 

of higher harmonics and turbulence.  One of the most remarkable 

results of his work is that effects due to non-linear interactions 

between turbulence and the oscillation, even for oscillation amplitude 
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as large as 34% of the free stream velocity, are so small that the 

effect of the oscillation on the mean flow is negligible. 

The group at ONERA/CERT in France has done extensive studies on 

a turbulent boundary layer subjected to sinusoidal free-stream 

oscillations.  Cousteix et^ al. (1977) used hot-wire anemometers to 

measure time averaged and phase averaged velocity profiles as well as 

turbulent intensity and shear stress across the boundary layer.  They 

found that the general behavior of the boundary layer and that the 

structure of the turbulence were not fundamentally affected by the 

unsteadiness of the flow.  A quasi-steady approximation, combined with 

a mixing length model, was used to describe unsteady flow at small 

Strouhal number.  Later, Cousteix et al. (1981,1982) extended the 

range of their experiments so that they covered Strouhal numbers from 

1.5 to 18.  They confirmed that the mean flow field is not affected 

by the unsteady effects, even up to a Strouhal number 18.  An interesting 

finding is that the main parameters of boundary layer like displacement 

and momentum thickness 6^, 6 ... oscilate as Strouhal number increases. 

Direct measurements of the wall shear stress was done by using a 

modified hot wire gauge.  They found that the law of the wall is not 

valid for evaluating wall shear stress if the Strouhal number is larger 

than 5. 

Parikh et al. (1981,1982) and Jayaraman et al. (1982) designed a 

test section in which the boundary layer was subjected to a sinusoidally 

varying, adverse, free-stream gradient.  In the upstream of the test 

section, a trubulent boundary layer grew under steady, zero-pressure 

gradient conditions.  This provided a well-defined inlet condition to 
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the test section, which is especially important for computation of the 

flow.  The imposed oscillation frequencies used in their experiments 

covered a range from quasi-steady (f = 0) to values approaching the 

bursting frequency.  The relative amplitudes of oscillations were 5% 

and 25% of mean free stream velocity at the end of the test section. 

The laser Doppler velocimeter was used to measure the phase averaged 

velocity profiles and turbulent intensities.  Again, they found the 

time averaged flow field is essentially unaffected by the imposed 

unsteadiness and considered this a consequence of two observations: 

(a) The time-averaged Reynolds stress distribution across the boundary 

layer is unaffected; and (b) the Reynolds stresses arising from the 

organized velocity fluctuations under imposed oscillation are negligible 

compared to the Reynolds stresses due to the random fluctuations.  How- 

ever, the periodic flow was observed to be very strongly dependent on 

the frequency of the excitation.  At high frequencies of oscillation, 

the boundary layer thickness and turbulent Reynolds stress were found 

to become frozen over the oscillation cycle while they were observed 

to have significant variation over the cycle at low frequencies.  The 

steady form of the law of the wall was found not to be valid for the 

phase averaged velocity profile at high frequencies.  The authors 

argued that the Strouhal number based on the streamwise distance in the 

test section and the local mean free-stream velocity is a very important 

parameter for the periodic velocity. 

The unsteady separating turbulent boundary layer over a flat plate 

has been studied extensively by Simpson et al. (1981,1983a,1983b).  The 

hot-wire anemometer, the laser Doppler velocimeter and a thermal flow 

direction probe were used to measure the effects of the sinusoidal 
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unsteadiness of the free-stream velocity on the separating turbulent 

boundary layer at low oscillation frequency. 

The measurements showed that, upstream of any flow reversal or back- 

flow, the flow behaves in a quasi-steady manner.  The semi-logarithmic 

law-of-the-wall velocity profile was found to be valid at each phase of 

the cycle.  The phase and the amplitude of phase averaged velocity was 

found close to the values in the free-stream.  However, downstream of 

the detachment, large variations of the amplitude and phase of the phase 

averaged velocity and the phase averaged turbulent properties were 

observed across the boundary layer.  They considered that unsteady effects 

produce a hysteresis in relationships among flow parameters.  The effect 

of unsteadiness was described by the authors in the following way:  As 

the free-stream velocity, during a cycle, begins to increase, the detached 

shear layer decreases in thickness, and the fraction of time that the flow 

moves downstream r  increases as backflow fluid is washed downstream.  As 

the free-stream velocity nears the maximum value in a cycle, the increas- 

ingly adverse pressure gradient causes progressingly greater near wall 

backflow at downstream locations while r  remains high at the upstream 

part of the detached flow.  After the free-stream velocity begins to 

decelerate, the detached shear layer grows in thickness and the location 

where flow reversal begins moves upstream.  Higher oscillation frequencies 

were found to enhance this hysteresis phenomenon. 

2.3 Periodic Trubulent Pipe (or Channel) Flow 

Lu (1973) studied the effects of pulsations on a fully developed 

turbulent pipe flow of water in a range of Reynolds numbers from 16,000 

to 81,600, with amplitudes from 0 to 0.17 of mean flow rate and frequencies 



13 

from 0 to 1.5 Hz.  The hot-film anemometer was used to measure the 

velocity profiles and turbulent intensities.  It was found that, when 

the pulsating amplitude is small compared to the mean velocity the 

Reynolds number and the dimensionless pulsating frequency are two 

important parameters to characterize the flow, whereas, when the amplitude 

is not small, the pulsating amplitude becomes an additional parameter. 

The time averaged flow field was found not be affected by the unsteadi- 

ness.  They suggested that a quasi-steady model can be used to predict 

periodic flow at low oscillation frequency. 

Achary and Reynolds (1975) made measurements of periodic turbulent 

air flow in a channel by using a hot-wire anemometer.  The Reynolds number, 

based on channel half width, was 13,800; the amplitudes were 2.4% and 3.6% 

of the channel centerline mean velocity; the oscillation frequencies 

were 24 Hz and 40 Hz respectively.  The data show that the periodic velocity 

is constant over most of the flow, with all the intersting effects occur- 

ring in a region very close to the wall.  The turbulent Reynolds stress 

perturbations were found to be out of phase with the strain-rates, 

indicating a viscoelastic type of repsonse.  An interesting finding is 

the strange difference between the 25 Hz data and 40 Hz data.  They 

suggested that there might be an interaction between the turbulence and 

the imposed oscillation since the data 40 Hz was taken at a frequency close 

to the "bursting frequency".  Several closure models were developed by the 

authors for the purpose of predicting the experimental results.  The 

models were not satisfactory.  However, they revealed several key features 

which need to be incorporated in a successful model. 

Misushina ejt al. (1973) made comprehensive experimental studies of 

the velocity profiles, turbulent intensities and auto-correlations in a 
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2 cm turbulent pipe flow with imposed oscillation frequencies from 

4 
0,125 Hz to 1.32 Hz and a time averaged Reynolds number 10 .  Electro- 

chemical probes were used to measure the instantaneous velocity and 

the turbulent intensity.  The bursting period was measured by determining 

the delay time of the location of the maximum in the auto-correlation 

curve of velocity fluctuations.  The authors suggested that turbulent 

pulsating flows can be classified into two groups by means of a critical 

period of pulsation, which is equal to the maximum time between bursts. 

When the periods of pulsation are longer than the critical period, the 

velocity profiles are similar to those for steady flow and the intensity 

of turbulent fluctuations don't vary in a cycle.  For shorter periods, 

the velocity profiles are different from those for steady flow and the 

intensity of turbulent fluctuations oscillates in a cycle with its phase 

about 180° different from that of the phase averaged velocity.  Later 

Mizushina eit al. (1975) investigated the effects of pulsations on the 

bursting phenomenon.  They claimed that if the pulsating period is in 

the range of the burst period, turbulence is generated near the wall by 

the flow pulsation.  Then, the generated turbulence propagates radially 

to the centre-line of the tube.  The mean propagation time of the 

generated turbulence from the origin to the centre-line of the tube 

agrees well with the mean burst period of steady turbulent flow and 

is independent of the pulsation period.  In the experiment, they found 

that when pulsation period is less than the mean burst period, the 

turbulent intensity oscillates near the wall and is frozen to its steady 

state value in the central region of the pipe.  This was interpreted 

by the authors to mean that the oscillation induced intensity near the 

wall doesn't have time to penetrate to the center in a period. 
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Ohmi et^ a]^. (1976) reported experimental results on the velocity 

distribution in pulsating turbulent pipe flow.  They found that the 

time-averaged distribution in pulsating flow agrees well with that of 

steady flows, and that the oscillating velocity profiles can be described 

by approximate solutions derived from a four-region model for a steady 

turbulent flow.  They further (1978) solved the fundamental equation 

for pulsating turbulent flow numerically by using this four-region eddy 

viscosity model.  The calculation indicates that a quasi-steady treatment, 

i.e., a time dependent friction velocity, should be applied at low oscil- 

lation frequencies.  The numerical results also suggest that the effect 

of large Reynolds number could be similar to that of low frequency on 

the oscillating flow field. 

Kirme (1979) used the laser Doppler velocimeter to measure velocities 

in pulsating turbulent pipe flow.  He pointed out that there might be a 

small region of backflow near the wall for some combinations of flow 

parameters.  For a larger Reynolds number, higher frequencies and amplitudes 

of oscillation are needed to form these zones.  Kirme also reported that 

an eddy viscosity model based on turbulent kinetic energy can not predict 

the pulsating flow correctly. 

Kita et al. (1980) proposed a fluctuating eddy viscosity model for 

Reynolds stress, based on a five region model in steady turbulent flow, 

and compared it with experimental data.  They suggested that a modified 

,  /^ *    *j 

Strouhal number Q.I /Re* , where J2 = / v r„ and R  = ^^-^ ,   characterizes 
U     e    V 

the volumetric flow rate, while Q/R    is an important parameter near the 

wall.  Their experimental data show no effect of oscillation on the 

time-mean velocity profile. 
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Binder and Kuney (1982) measured periodic velocity oscillations near 

the wall in a turbulent pulsating channel water flow.  They reported 

that with a proper optical arrangement it was possible to use LDV to 

make measurements as close as 0.25 mm from the wall corresponding to 

y = 2 for u =17.5 cm/s.  The results showed that the mean flow and c 

the mean turbulent intensity were not affected by the forced oscillation. 

The amplitude and the phase shift profiles of the periodic component 

approximately follow the laminar Stokes solution at high frequency. At 

low frequencies, the phase shift near the wall decreases to slightly 

negative values while the amplitude remains close to the Stokes solution. 

The phase averaged longitudinal trubulent intensity was not found to be 

simply proportional to the velocity oscillations.  The authors argued that 

in the region near the wall the Stokes thickness £ nondimensionalized 
s 

with the mean viscous sublayer thickness is an important parameter 

needed to characterize turbulent pulsating flow. 

Ramaprian and Tu (1982,1983a,1983b) reported detailed experimental 

data on the instantaneous velocity and wall shear stress at a mean 

Reynolds number 50,000 in a fully developed turbulent pipe flow in which 

the volumetric flow rate was varied sinusoidally with frequencies 0.5 Hz 

and 3.6 Hz, and amplitudes 64% and 15% of the mean flow rate respectively. 

In contrast to most other researchers, they concluded from their data 

that both the time mean velocity profiles and the time mean turbulent 

intensities are affected by the imposed unsteadiness.  They considered 

that these effects are caused by the combination of high oscillation 

frequency (approaching the bursting frequency) and large amplitude.  The 

phase averaged turbulent intensity data showed that at high frequency 
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the turbulent intensity remains frozen throughout the cycle in the outer 

region and that at lower frequency it experiences significant variation. 

The authors also reported the results of direct measurement of wall 

shear stress in turbulent pulsating flow with flush mounted hot film 

gauges.  The phase shifts of the wall shear stress were found to be of 

the order of 10 degrees in their experimental range.  However, since 

they didn't consider the frequency response of the probe, serious errors 

could be present in the results obtained at high frequency.  They 

suggested a modified Strouhal number —jf , which uses friction velocity 

instead of bulk mean velocity, to characterize unsteady turbulent flow. 

With this parameter, they classified turbulent pulsating flow into 

five regimes, based on the histogram of the intervals between the 

bursts measured by Mizushina et^ al. 

2.4 Turbulent Flow Over a Solid Wavy Surface 

A relevant field to the pulsating flow is turbulent flow over a 

wavy surface.  The spatial periodic variation of the solid boundary 

causes changes of pressure in the fluid field and of shear stress along 

the wall.  For small enough wave amplitudes a linear response is obtained 

whereby the functions describing the pressure and shear stress variation 

have a single harmonic.  Abrams et al. (1981) presented necessary 

conditions for a linear response. 

A review of the measurements of wall shear stress and pressure 

profiles over a solid wavy surface is given by Abrams (1984). 

The analysis carried out by Thorsness et al. (1978) indicates that 

the phase angle characterizing the shear stress variation at the wall is 

+       * 
a unique function of a wave number, a = 2irv/Au , made dimensionless 
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* 
with the kinematic viscosity, v, and the friction velocity, u .  The 

amplitude of the shear stress variation, made dimensionless by using 

V and u , is found to vary linearly with a„u /v, where a„ is the amplitude 

of the wave.  The ratio of these two dimensionless amplitudes is also an 

unique function of a . To predict the phase shift and amplitude of the 

wall shear stress, the principal problem is the specification of the 

wave induced Reynolds stresses.  Thorsness (1975) tried several models 

and found that the mixing length model of Loyd et^ a3^. (1970) did the 

best job in accounting for the influence of wave induced variations of 

the turbulence properties.  This model predicts a sharp variation of 

phase shift of the wall stress in a narrow range of a , However, his 

experimental data didn't cover a large enough range of conditions to 

show this variation. 

Abrams (1984) extended the experimental range by using the same 

wavelength X = 2 inches, and by increasing the maximum value of u 

by a factor of four.  The experimental data indeed show a sharp change 

-4   +   -3 
in the phase shift of the wall shear stress for 6 x 10  < a < 10 

The interpretation of this observation is the relaxation effect of 

turbulent flow in the viscous wall region, associated with the wave- 

induced variation of the pressure gradient.  The physical process 

underlying this phenomenon is not yet understood.  Although, the author 

tried a k-e model to introduce the relaxation in a more natural way, 

the calculated results couldn't describe the data any better.  His 

work also indicates that the wave induced variation of pressure gradient 

has a more important effect on the turbulence in the viscous sublayer 

than the wave induced variations of streamline curvature. 
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2.5  Siumnary of the State of Art 

Due to large efforts made in the last decade, many experimental 

and some computational results have been published.  Nevertheless, 

turbulent pulsating flow is still not understood. 

Most of the data have shown that the time mean flow field is 

unaffected by the imposed oscillation.  Only the data reported by 

Ramaprian and Tu indicate a slight effect of oscillation on the time 

mean velocity profile and on the time mean turbulent intensity.  One 

can at least get an impression that the mean flow field is not 

sensitive to the imposed unsteadiness. 

Nevertheless, the phase averaged velocity field is strongly 

dependent on the characteristics of the external excitation, especially 

of the oscillation frequency.  The response of turbulent flow to an 

imposed oscillation is qualitatively similar to that of laminar flow. 

At very low frequency, the velocity profile for both flows at each 

instant is the same as that in a steady flow with the same flow rate. 

At high frequency, the periodic velocity component for both flows is 

flat in the center of the pipe and has a rapid change near the wall. 

However, the response of these two flows are quantitatively very 

different.  For example, the frequency parameter fi = /— r„, which 
V 0 

characterizes the laminar periodic flow, is no longer a suitable 

parameter for the turbulent case.  Although several frequency para- 

meters have been suggested for characterizing turbulent pulsating 

flow, no definite conclusion can be deduced.  Moreover, the amplitude 

of the imposed oscillation and the mean Reynolds number are other 

important factors affecting the turbulent pulsating flow.  Their effects, 

especially when they combine with the effect of frequency, are not yet 

understood. 
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There are some data on the phase averaged intensity of turbulent 

fluctuations reported in the literature. It seems that the phase 

averaged intensity oscillates around the mean value at low frequency, 

while at high frequency it varies only near the wall and is frozen to 

the mean value in the region away from the wall. The phase of the 

intensity variation also shifts from that of the velocity, indicating 

that there is no simple relation between the turbulent properties and 

the rate of strain. 

The effects of the imposed oscillation on the turbulent structure 

are not clear. Most of the existing data for the Reynolds stress are 

calculated from the measurement of the velocity profile by using the 

momentum balance equation.  The large possible errors in data obtained 

in such manner make it difficult to come to any definite conclusions. 

A strong interation between the turbulent and the imposed oscillations 

at some resonant frequency, anticipated by several researchers, is 

still not substantiated. 

The response of the flow in near wall region is very important for 

understanding turbulent pulsating flow.  Because the inertial effect 

is much less in this region than in the outer flow, the data near the 

wall offer a good test for turbulent models used to predict the flow. 

However, few reliable measurements have been made in this region.  At 

high frequencies, the layer, in which the periodic velocity has spatial 

variation, is so thin that measurement of its properties is not feasible. 

Therefore, the wall shear stress measurements in the present study are 

needed to obtain a better understanding of a turbulent pulsating flow. 
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CHAPTER 3.  THEORY 

In this chapter, a theoretical framework for the description of 

turbulent pipe flow with a superimposed organized sinusoidal excitation 

is presented.  The flow field is decomposed into three components: the 

time mean flow, an oscillation flow and the turbulent fluctuations. 

The equation governing the oscillation flow is derived and solved 

numerically by applying several turbulent models based on the eddy 

viscosity concept.  Then, the phase and the amplitude characterizing 

the variation of shear stress at the wall are calculated at different 

flow conditions.  The results are compared with experimental data in 

Chapter 5. 

3.1 Triple Decomposition and the Phase Average 

In steady turbulent flow, the problem is attacked by decomposing 

flow variables into time mean values and turbulent fluctuations.  The 

term "steady" means the time mean values are independent of time. 

When an organized unsteadiness is imposed on the system, this additional 

component, which is a deterministic function of time, has to be included. 

Following Hussain and Reynolds (1970), the problem can be formulated as 

E(x,t) = E(x) + E(x,t) + E'(x,t), (3.1) 

where E(x) is the time mean value of E(x,t) at a given location x, 

E(x,t), the organized response component due to the imposed excitation 

and E'(x,t), the turbulent fluctuation. 

In order to separate the three components of a flow variable, two 

different averaging procedures are employed; i.e., a time average and an 
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ensemble average.  The time average is conventionally used in steady 

turbulent studies, and is defined as 

E(x) = lim i 
•T 

E(x,t)dt (3.2) 
0 

In discrete form, the time average is the average of a large number 

of samples in a record of sufficiently long duration.  That is 

N 
E ,_, 

N -> 00 " i=l 
W = lim ^ Z  E (x,t^) (3.3) 

In practice, the total time duration in which all the samples were taken 

is large compared to the imposed excitation period and the longest turbulent 

fluctuation period. 

The ensemble average is defined as the average over a large number 

of realizations of the same phenomenon and is expressed as 

N 
<E(x,t)> = lim - lE^(x,t), (3.4) 

N->-°°   i=l ■  . 

where i identifies a particular realization. This procedure can be 

used to extract the organized flow component. 

When the imposed excitation is periodic, the ensemble average is 

equivalent to a phase average.  Each cycle is considered as a realization 

in the ensemble average.  So, a phase average is defined as the average 

of samples from a large number of cycles at a fixed cycle angle. 

N-1 
<E(x,e)> = lim - I   E(x,e + Zirn), 0 < 6 < 277, (3.5) 

N-^oo   n=0 



23 

where 6 is the cycle phase angle.  In practice, N is a large finite 

number. 

By definition, phase averaging eliminates the term involving random 

turbulent fluctuations, namely. 

<E(x,e) > = E(x) + E(x,e) , (3.6) 

and the time average of <E(x,6) > eliminates the oscillation component, 

<E(x,0) > = E(x) (3.7) 

From the above expressions, the oscillation component and the 

turbulent fluctuations can be extracted from the flow variable as 

E(x,t) = <E(x,t) > - E(x) , (3.8) 

and 

E'(x,t) = E(x,t) - <E(x,t) > (3.9) 

Figure 3.1 displays the relations among these components. 

3.2 Governing Equation for the Oscillation Component 

The governing equations for an incompressible flow of a Newtonian 

fluid in a circular pipe are given by the Nevier-Stokes equation in 

cylindrical coordinates, 

3u ,   9u , w 3u ,   3u 
3t    3r  r 36    3x 

3P ^ 
r 3r 3r 

+ 1 3^u 
r2 3e2 

+ 3£u1 
3x2 

(3.10) 

3v ,   3v , w 3v  w  .   3v 
3l + ^ 3F + 7ie"- —"^ "3^ 

3r + y 
_3_ 
3r 
13,. + 1 9^ 

r^ 3e2 r2 36  "^ (3.11) 
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8w ,   3w , w 8w , vw ,   9w 

1 d2_ 
r 36 + V 

_3_ 
3r 

1 J_ 
r 3r 

(rw) + i ^ + _L Iz _^ ^' 
:2 362 -2 3f 3x^U 

along with the continuity equation 

(3.12) 

1 3  ,  - _^ 1 3w ^ 3w 

7-37 ^^^) +73¥+ 37= ° ' (3.13) 

where u, v, and w are the velocity components in the axial direction x, 

the radial direction r and the angular direction 6 respectively. 

For turbulent pulsating flow, the triple decomposition is applied 

to these flow variables as. 

u = u + u + u' , 

V = V + V + v' , 

w = w + w + w' , 

p = p + p + p' . (3.14) 

If the flow is fully developed and symmetric in the angular direction, 

time averages of equations (3.10) to (3.14) are dramatically simplified. 

The components of velocities such as v, v, w, w vanish.  The equation 

describing the time mean flow becomes 

0 = -^ 
dx r dr       ^       r dr 

du 
dr (3.15) 

To solve this equation, the Reynolds stress, x ^^^ =  -p u'v', has to 

be specified in terms of u and r.  This is the so called closure problem. 

In turbulent pulsating flow, one principal question is whether the time 
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mean turbulent property u'v' is affected by the imposed unsteadiness. 

If it is not affected, the closure method used for steady flow can be 

applied and the time mean velocity profile will be the same as that for 

steady flow.  Otherwise, the time mean velocity profile in pulsating 

flows should show some differences from that in steady flow, and a new 

closure method needs to be developed. 

In a similar way, the equation describing phase averaged flow is 

derived by phase averaging equations (3.10) to (3.13).  It is given as 

9< u > 
at 

3< p 
9x 

19,    (t) , , u 3 
r 3r r 3r 

r3< u > 
3r J 

(3.16) 

.(t). 
where <T   > =-p <u'v' > is the phase averaged Reynolds stress. 

The equation which governs the oscillation component is obtained 

by subtracting the mean flow equation (3.15) from the phase averaged 

equation of motion (3.16).  This gives 

3t 
3p 
3x r 3r r 3r 3r (3.17) 

In order to solve equation (3.17) the oscillation induced Reynolds stress 

T   , which is defined as 

x(*^> = <x(^>> -T^*^) (3.18) 

has to be specified.  This is done by following Boussinesq's (1877) 

concept of turbulent eddy viscosity, which relates Reynolds stress to 

the velocity gradient by an analogy with Newton's law of viscosity.  The 

phase averaged Reynolds stress then can be written as 

^ (t) 3u 
t 3y (3.19) 
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If it is assumed that the imposed small oscillation induces a variation 

of turbulent eddy viscosity v around its time mean value v , the 

oscillation induced Reynolds stress is expressed as 

^(" - P 
— 9u , ~ 3u 
V — + V — 

[ t 3y   tSyJ 
(3.20) 

if it is assumed that the second order term v -r— is negligible.  The 
t oy 

time mean Reynold stress is written as 

T<'>.p - 3u 
(3.21) 

3.3 Time Mean Flow 

Most previous researchers have found that the time mean flow is not 

affected by imposed small amplitude flow oscillations.  Experimental 

results on wall shear stress obtained in the present study also support 

this conclusion.  Therefore, the time mean velocity profile is calculated 

by using the same eddy viscosity v  that represents a steady flow.  That 

is. 

u = 
^y (1 - y/r^) '^^ 

(v + v^) 
dy (3.22) 

where u is the time mean friction velocity and r^. is the radius of the 

pipe.  An empirical equation proposed by Reichardt (1951) is used for 

the prediction of v in the core region: 

ky+ 
1+^ 

^0 
1 + 2 (3.23) 

where k is the von Karman constant, 0.4. 
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In the region close to the wall, the mixing-length theory is used 

so that 

\-''^   ' ' (3.24) 

where %,   the mixing length characterizing the undisturbed flow, is 

described by the Van Driest function. 

£ = ky [1 - exp(-D^)] (3.25) 

The term D is a damping function defined as 

p  vA 

and T  is the time mean shear stress at the wall.  The Van Driest damping 

constant A is 26 for pipe flow.  By combining  (3.24) and (3.25), the 

eddy viscosity in the wall region can be expressed as 

-1 ^ /l + 4kV^(l - exp(-Dj)^ (1 - y/r^)    (3.27) 

Figure 3.2 gives the radial variation of eddy viscosity, calculated 

from (3.23) and (3.27).  It is seen that the change of the eddy viscosity 

from the near wall region to the outer flow is fairly smooth.  The 

velocity profile calculated from (3.22) at Re = 23,000 is compared with 

the data measured by Nikuradse (1932) in Figure 3.3.  The good agreement 

between the two indicates that the eddy viscosity model used in this 

study is able to describe the time mean flow field.  Furthermore, the 

Van Driest formula is a continuous function from the wall through the viscous 

sublayer and into the fully developed turbulent region.  This feature 
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is very important in modeling an oscillating flow for which the flow 

variation at high frequency case is confined to a thin layer near the 

wall. 

3.4  Quasi-laminar Model (Model A) for the Induced Flow Oscillation 

The simplest model for the induced flow oscillations involves the 

assumption that induced oscillations of the Reynolds stress are zero, 

T   =0.  This means that the induced oscillations in a turbulent 

flow will behave as the same as for a laminar pulsating flow, i.e.. 

3u    1 9p  V 8 
9t    p 9x  r 3r 3r (3.28) 

This equation has been solved by Th. Sexl (1930) and S. Uchida (1956) 

for a pressure gradient with sinusoidal variation in time. 

1 dv_ 
p 3x a cos wt (3.29) 

The model is assumed to approximate the flow at very high frequencies, 

for the spatial variation of the imposed flow oscillations is confined 

to a very thin layer near the wall where turbulence has negligible 

effect.  At high frequencies, n  = y'- r  >> 1, the solution is given as 

u(r,t) = — < sin ut - 
CO I 

exp 
27 ^^0 - ^) 

sm (3.30) 

This equation shows that the oscillation component in the central 

portion of the pipe behaves as a solid body, i.e.. 
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u(t) = -^ sin tot . (3.31) 
r-K) 

Only in the Stokes layer, of thickness 

^s  = /^ ' (3-32) 

does the velocity u (r,t) change rapidly with distance y from the wall. 

The velocity gradient at the wall is obtained from (3.30) as 

= — cos (a)t - ;^ ) . (3.33) 
y=0 

Certain phase relations are observed from these equations:  The central 

velocity lags the pressure gradient by 90".  The velocity gradient at 

the wall lags by only 45°, i.e., the velocity gradient at the wall is 

45" ahead of the central velocity. 

Figure 3.4 shows the oscillation velocity profile at eight phases 

for laminar flow when the dimensionless frequency parameter n = 150. 

The oscillation velocity component is made dimensionless with the amplitude 

of velocity at the center line.  It is seen that the velocity is flat at 

Y > 0.04 for each instant.  The changes of the velocity happen in a thin 

layer Y < 0.04.  The crossover of the velocity profiles at different 

phases in the near wall region indicates the phase shift of the velocity. 

The frequency effects on the oscillation velocity can be easily seen 

in Figure 3.5 and Figure 3.6, where the amplitude and the phase of the 

oscillation component are plotted for four different f2.  As Q  increases, 

the variation of the oscillation component is confined to a thinner 
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region close to the wall.  An interesting result is that the phase of 

the velocity near the wall is ahead of that in the center. 

A physical interpretation of the behavior of the oscillation velocity 

in a laminar flow is given by Lighthill (1954) and Gerrard (1971).  As 

the piston oscillates, the variation of pressure gradient is imposed 

on the flow.  Due to inertia, the change of velocity lags behind that 

of pressure gradient.  However, the inner part of the flow responds to 

the pressure gradient more rapidly than the outer flow since the inertia 

of the fluid is less here than at the pipe center. The vorticity, 

which is simply the radial gradient of velocity in a fully developed 

pipe flow, created at the wall diffuses into the flow.  The relevant 

parameter J2 is a measure of the ratio of the tube radius to the distance 

vorticity diffuses in one period of oscillation.  At high frequency the 

vorticity never has time to diffuse to the center region before being 

annulled by oppositely signed vorticity.  This results in the flat 

distribution in the center part of the pipe.  On the other hand, the 

sectional mean velocity must equal to the piston speed at each instant 

by the continuity condition of incompressible fluid.  Retardation due 

to viscous effects near the wall is balanced by an acceleration over 

the rest of the cross section.  This causes an overshoot of velocity 

at the outer part of the Stokes layer. 

3.5 Hussain and Reynolds Model (Model B) for the Induced Flow Oscillations 

If the effect of oscillation on turbulence is considered, i.e., 

T   / 0, a simple way to relate the oscillation induced Reynolds stress 

to the induced velocity gradient is to assume that the eddy viscosity is 

specified only by mean flow field (Hussain and Reynolds, 1970).  That is 



~(t)   - 3u 
"T        PV. T— 
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(3.34) 

The substitution of (3.34) into (3.17) gives 

3u _ _ ]^ dj^      _v _3_ 
at "  p 3x  r 9r 

r ^ ^ ''ti 8u" r    1 + — 
V ar J (3.35) 

where v^ is calculated by (3.23) and (3.27) for core and wall region, 

respectively. 

3.6 Quasisteady Approximation for the Mixing Length (Model C) 

The shortcoming of Model B is that it doesn't take account of the 

changes of eddy viscosity during the oscillation.  To consider this, 

the mixing length is assumed to be given by 

z = Si + a , (3.36) 

where I  is the mixing length for the undisturbed flow and I,   the 

oscillation induced part.  Then, the oscillation induced eddy viscosity 

can be expressed as 

t     3y      3y ' (3.37) 

where I  needs to be specified. 

The Van Driest formula for the mixing length in (3.25) is for a 

steady flow with zero pressure gradient.  The wall shear stress T is 
w 

used in the damping factor since the shear stress is nearly constant in 

the region close to the wall.  In flow over a wavy surface, the wave- 

induced pressure gradient can cause large variations of the shear stress 

through the viscous wall region which alter the production of turbulence. 
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Abrams and Hanratty (1984) took this into account by redefining the 

damping factor as 

p  vA 

where the local shear stress, T(y), is used instead of the value at the 

surface, T . This formulation will predict a thickening of the viscous 

wall region in favorable pressure gradients since T(y) is, then, less 

than the value at the surface T: • 
w 

In a pulsating flow, the time variation of the pressure gradient 

also causes a large variation of shear stress in the viscous wall region. 

Therefore local phase averaged shear stresses <T(y,t) > are used in the 

damping factor.  The oscillation induced mixing length SL  is then given 

as 

+ 
J   1 ky Z_ iSnll '       + ky ^ '^^^-'   exp (- y /A), (3.39) 

2    A  Y(y) 

where 

and 

T(y,t) = T^^^y,t) + y 1^ (3.40) 

T(y) = T^ (1 - y/r^) . (3.41) 
w       u 

From (3.20), (3.37), and (3.39) to (3.41), the oscillation induced eddy 

viscosity is expressed as 

V + B (v + V ) 3u 
~   _t __t ^ (3 42) 

a-B,f     '" 
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where + c ,s~ 

A [9yJ 

2 _ 

exp (- y /A)/[(l - y/rg) u*^ ] (3.43) 

is a function of y, has a maximum near the wall and approaches to zero 

with increases of distance from the wall, as shown in Figure 3.7.  The 

oscillation induced Reynolds stress, as described in (3.20), can be 

written as 

T   = P ^-^(y) ^ , (3.44) 

with 

2v" + Bv , 

'i'l^y) =  1 - B   • (3.45) 

This model is a quasi-steady approximation.  The mixing length, 

as well as the Reynolds stress, are directly associated with the 

instantaneous vleocity gradient in the same way as for a steady flow. 

3.7  Relaxation Consideration of Pressure Gradient Effect (Model D) 

Loyd, Moffat and Kays (1970) and Reynolds (1974), (1976) found that 

(3.26) with A = 25 does not correctly predict the effect of pressure 

gradient in equilibrium boundary layers.  They therefore allowed A to 

be a function of the dimensionless pressure gradient p"^ = ^ v/pu*^. 
dx 

For small p , 

A = I (1 + k^ P++ k^p-^^ + ...) . (3_^g) 

with k^ = -30 and k = 1.54 x 10"^. 

For situations in which the pressure gradient is varying rapidly, 

Loyd et al., (1970) suggest that the flow close to the wall sees an 

effective pressure gradient given by the equation 
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dp 
dx eff 

dp 
dx dx eff 

d (xu /v) 
(3.47) 

where k Is a relaxation constant approximately equal to 3000. 

Thorsness et al. (1978) and Abrams (1984) adopted this approach in 

accounting for the non-equilibrium effects in the viscous wall region 

for wavy surface flows.  With k^ = -35, k^^ = 1800, Abrams obtained 

good agreement between the model and experimental measurements of the 

variation of wall shear stress along a wave surface. 

The pressure gradient in a pulsating flow is varying with time 

rather than with space.  A straightforward application of (3.47) to 

this case requires the definition of a convection velocity which 

characterizes the streamwise propagation of disturbances in viscous 

wall region to relate spatial variations to time variations.  A convection 

velocity of C^ = 15 has been chosen to take account of this effect.  There- 

fore, the effective pressure gradient for a pulsating flow is defined as 

dp 
dx eff 

dp 
dx 

'dp] 
dxj eff 

\ tlf^ 1 
\' 

15 
(3.48) 

The oscillation induced eddy viscosity is then given as 

\ + ^^" + \) ,u       2B (1 -y/r^) u*2 ^ 

(1 - B) |H 
3y 

3y 

(^-^>l7     " 
(3.49) 

. , A _ ,  + 
with 3 - k^p ^^^.  A comparison with (3.42) shows that the second term 

A 
on the right side of (3.49) considers the influence of flow relaxation 
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for high frequencies.  In general, this term Is not In phase with the 

oscillation velocity gradient -r— .  It is a strong contributor to v 
dy t 

in the wall region.  The oscillation induced Reynolds stress is described 

as 

?(«- p 
A ■'■ 

(3.50) 

where 

<t)2(y) = 

2B (1 - y/r^) u *^ 

1 - B 
(3.51) 

These relations predict that the relaxation effect is confined in 

the wall region because B approaches zero at large y. 

In the core region, £ is assumed to be zero, and x   = 2pv -r—, 
t dy 

where v is taken as a constant calculated from (3.23) at the pipe 

center.  The match point y^ is where the calculated ^^ (y_) is equal to 

twice the value of the eddy viscosity evaluated at pipe center. 

3.8 Numerical Scheme 

The time variation of the wall shear stress caused by an imposed 

variation of pressure gradient defined by (3.29) is calculated by 

solving equation (3.17) numerically.  The equation was made dimensionless 

in the following manner: 

8U 
3T 

1            3 
cos T + 

Ji^d - Y)   ^^ 
(1 - Y) 1 + ^1 

V 

3U' 
3Y 

1               3    r 
2                    3Y     ^^ - ^' 

v^  3u'- 

V     3Y - 
(3.52) 



43 

with 

a       / V 0 

Y = 1 - ;?- ,   T = (ot, (3.53) 
0 

and 

u- = ^ 

The boundary conditions are 

U = 0    at Y = 0 

and 

3U ' 
^= 0   at Y = 1 (3.54) 

The equation was solved numerically by a Crank-Nlcolson implicit scheme 

with variable spatial grid size.  Since the oscillation velocity changes 

rapidly in the wall region and the final goal of the calculation is to 

find the velocity gradient at the wall, it is necessary to use a very 

small grid size close to the wall.  Grid sizes which are increasing in 

a geometric series of Y were chosen: 

AY (H^ "*" - 1) 
Y. =   ,    l^j<J (3.55) 
J      (H - 1) 

where AY^ is the first grid size near the wall, and factor H is the 

ratio of two consequent grid sizes.  Ratio H is chosen as 1.05 for present 
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work.  The total nvimber of grid points in the radial direction is then 

given as 

"(H - 1) 
J = log / log H , (3.56) 

where J takes integer number. 

The first grid size AY^ was selected small enough so that the 

velocity gradient at the wall can be calculated by the assnmption of 

linear variation of velocity in that region.  After several tries, AY^, 

was taken as 1/30 of the Stokes layer thickness.  Figure 3.8 gives the 

schematic description of the grids. 

The initial condition, time zero, was chosen as the quasi-laminar 

2TI- 
result.  Equal time steps of AT = ^-775- were used.  At each new time level 

iZo 

the velocities at all points in Y direction were calculated from previous 

time level results. After about five periods calculation, the velocities 

at each phase of the cycle are found to converge to constant valnes. 

Because of the variable grid size in space, the finite difference 

expression for derivatives used with an equal grid size cannot be 

employed.  Expressions for finite difference with variable grid size 

have been derived by approximating a function piecewise with a second 

order polynomial 

U(Y) = a. + b.Y + C.Y^,   at Y.   < Y < Y.,,        (3.57) 
2 1 2 3-1       J+1 

where U(Y) is the approximated value; a., b. and c, the coefficients 
J      J J 

in the polynomial.  Then, the finite difference forms of derivatives 

are derived as -       , 
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Figure 3.8 Grids used for finite difference 
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9Y 
"j±i. 

H(H + 1) + 
(H - 1) U.   HU. ,^ 
 —JL  _  izl 

H H + 1 (AY^H^ ^) + O(AY^) ,  (3.58) 

and 

3Y2 

r2U.^,   2U.   2U.,7 
 J+1 + —J- ^  J-1 + 

j   >- H(H+1)    H    H+1 -J 
/ (AY^ H^ ^)^ + O(AYJ) , (3.59) 

where 2 £ j < J - 1.  Details of the derivation are given in Appendix II, 

It is clear that the above forms reduce to the standard central finite 

difference expressions for equal grid sizes, i.e., H = 1. 



47 

CHAPTER 4.  DESCRIPTION OF EXPERItlENTS 

4.1 Experimental Flow Loop 

A schematic drawing of the loop in which the experiments were performed 

is shown in Figure 4.1.  The loop was originally built by Sirkar.  Details 

regarding its design may be found in a thesis by Sirkar (1969) and in a 

paper by Sirkar and Hnaratty (1970).  In this work, a reciprocating piston 

was connected to the loop. 

The mean flow was generated by a centrifugal pump while the imposed 

oscillation was introduced by a piston with a diameter of 6.35 cm and an 

adjustable stroke length from 0 to 15,2 cm.  The mean flow rate was 

measured by a vortex shedding flow transmitter (Eastech, Model 2420) 

with an accuracy of 0.5%.  The frequency of oscillation in the experiment 

was fixed at 0.325 Hz or 0.625 Hz by adjusting the circular frequency of 

the motor driving the piston.  The oscillating flow component was intro- 

duced into the system between diaphragm valve 3 and calming section 4. 

The uniform flow that emerges from the calming section is tripped by a 

1.26 cm long ring consisting of a series of 0.95 cm equilateral 

triangles around the circumference of the entrance of the 19.4 cm pipe 

line.  In the experiment, diaphragm valve 3 and bypass valve 17 were 

adjusted to impose a large pressure drop across them.  This minimized 

the distortions of the sinusoidal oscillation in the 19,4 cm pipe, 

caused by the time response of the whole system. 

Rectangular electrode made of platinum were mounted flush with the 

wall of a test section located 67.5 pipe diameters downstream from the 

pipe entrance.  The fluid was an aqueous solution, 0.1 M in potassium 

iodide and 0.0038 M in iodine, maintained at a temperature of 25 ± 0.1°C. 

2 
The kinematic viscosity of the solution was 0.00866 cm /sec. 



48 

1. Storage tank 
2. Worthington pump 
3. Diaphragm valve 
4. Calming section 
5. 19.4 cm pipe upflow 
6. Test section 
7. Anode 
8. Vortex flow meter 
9. Temperature 

control unit 
10. Recycling pump 
11. Filter pump 
12. Filter 
13. 10.2 cm pipe downflow 
14. 10.2 cm bypass pipe 
15. Pulsating generator 
16. Pressure transducer 
17. Bypass valve 

Figure 4.1 Schematic of 19.4 cm flow loop 
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4.2  Electrochemical Technique 

Electrochemical techniques were us-ed to measure flow in the immediate 

vicinity of  the solid wall.  These were developed by Reiss and Hanratty 

(1963) in this laboratory.  The principle behind them is as follows: 

When a voltage is applied to an electrochemical cell in an aqueous 

solution of potassium iodide and iodine, the following reactions are 

carried out on the surfaces of the electrodes: 

Cathode    I~ + 2e -> 3I~ 

Anode      3I~ -> I~ + 2e. 

t 

When the electrochemical process is controlled by the rate of mass 

transfer at the surface of the cathode (the test electrode), the current 

flowing in the cell, I, is related to the rate of mass transfer, N, by 

the equation 

^ = rvF'    ^ (4.1) 
e e 

Where A is the area of the test electrode, n , the number of the e e 

electrons involved in the reaction and F, Faraday's constant. 

Consider a rectangular probe embedded in the wall with its long 

side perpendicular to the direction of mean flow.' If the dimensions 

of the element are selected correctly (Hanratty & Campbell, 1983), 

diffusion in both the transverse and streamwise directions may be 

neglected.  Furthermore, the thickness of the concentration boundary- 

layer will be small enough that the effect of velocities normal to the 
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surface can be neglected and the velocity in the streamwise direction 

is given by 

u = Sy . (4.2) 

The mass balance equation in the concentration boundary layer can be 

described as 

9C . _  3C    3^C 

3y 
(4.3) 

where a is the diffusivity.  Equation (4.3) is to be solved using the 

boundary conditions 

C (x, o, t) = 0    0 ^ X ^ L 

C (x, CO, t) = C (0, y, t) = a (4.4) 

For steady flow or if the flow is unsteady and changing slowly 

with time, the first term in (4.3) can be neglected.  The solution of 

this equation is the pseudosteady state approximation given by Reiss 

(1963): 

C^  r(4/3) 
e   dz , 

0 
(4.5) 

where 

n = y 
9 ax 

1/3 
= y Sc 

r 1 1^/3 

9x 
(4.6) 

and Sc, the Schmidt number.  The terms y and x are the coordinate 

distances made dimensionless with respect to friction velocity u 
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and kinematic viscosity v.  The transfer coefficient, K = N/C, , is 
D 

then given as 

a 
K = 

C, L 
b 

L ac 
dx = 0.807 

y=o 

2 
a S 1/3 

(4.7) 

Equation (4.7) is normally used to obtain the velocity gradient at the 

wall, or wall shear stress, from the measured values of K.  Details 

regarding the measurement of the current and. the electrochemical technique 

are given in a review article by Hanratty and Campbell (1983). 

When this technique is applied to unsteady flows, especially at 

high frequencies of oscillation,  the pseudosteady approximation might 

not hold.  Fortuna and Hanratty (1971) considered the effect of the 

frequency response of concentration boundary layer on the measured 

amplitude of the fluctuating flow by solving a linearized form of the 

time varying conservation equation.  In the present work, particular 

attention was given to the phase lag errors that arise in using (4.7) 

to calculate time variation of x (t).  Numerical and experimental 

studies of this problem, summarized in a recent paper by Mao and 

Hanratty (1984), are described in the following section. 

4.3 Use of Electrochemical Wall Probes to Pulsating Flow 

Let C and S be the sum of average and time dependent terms. 

C = C + c 

S = S + s (4.8) 
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Equation (4.3) can then be decomposed into equations for C and for c. 

The solution for C is the same as (4.5).  The equation for c is solved 

by using a harmonic variation for s, 

s = s e   , (4.9) 

where s and (JJ are real numbers.  Since the differential equation for c 

is linear. 

c = c e   = c — e   , (4.10) 
S 

where c and c^ can be complex numbers. 

The differential equation defining c^ is 

with 

. * ,+2/3   ^ * ^'^l   * ^^   ^S        '     ,, ,,, 10) L    c + y  + y — = —^ , (4.11) 
dX 3X   ay 

X = x^/L^  = x/L , (4.12) 

*   + „ 1/3,,+1/3 - ^/ ION y = y  Sc   /L (4.13) 

*   ^"^        1/3 

u 
0) = -^ Sc-"'^ .      - (4.14) 

The boundary conditions are 

c^ (X, 0) = 0 0 < X 5 1 

c^ (X, «•) = 0 

c^ (0, y*) = 0 . (4.15) 



53 

The transfer coefficient can also be represented as the sum of 

an average and time dependent term 

K = K + k (4.16) 

Again, because of the linear assumption. 

k = k e icot (4.17) 

where k is a complex amplitude.  For the case where a pseudosteady state 

assumption can be made, one obtains from (4.7) 

C    = 0-807 g^^^   s 
s     ^   ,1/3 -2/3 (4.18) 

Since 

s a rl 3c, 
k = - 

S C K  0  3y 
b        v= 

dX , 

y=0 

(4.19) 

it follows from (4.11), (4.15) and (4.18) that 

-k_     * +2/3, 
r = f (w L   ) , (4.20) 

where k = k„ + i k^ is complex and k is real. 
K      i s 

The periodic variation of k, defined by (4.17), is characterized 

by an amplitude. 

k = (k^)^ + (k^)^ 
1/2 

(4.21) 
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and by a phase angle 

tan (4.22) 

where positive 9 means k lags s in phase.  The term (4.22) represents 

the phase correction and 

k 
'"      A = ^-    , ' (4.23) 

|k|        - 

the amplitude correction that must be applied to the signal coming from 

the probe, if the pseudosteady state relation (4.7) is used to calculate 

S(t) from the time varying signal. 

Values of A and 9 were obtained by numerically solving (4.11) with 

a scheme similar to that used by Fortuna & Hanratty (1971). 

2 * +2/3 
Plots of 1/A and phase lag, 9, are plotted versus w L    in 

Figures 4.2 and 4.3.  The much stronger effect of the frequency response 

of the scalar boundary-layer on the phase lage, 9, is immediately evident. 

* 4-2 / '\ 2 
At (jj L    =1 the amplitude correction 1/A is only about 1.07; however, 

at this same condition the phase lag correction will be close to 16°. 

The principal unconfirmed assumption in the above analysis is that 

the fluctuating scalar field is described by a linearized form of the 

conservation equation.  In order to verify the numerical results obtained 

in Figures 4.2 and 4.3, experimental tests were carried out for four 

different sizes of mass transfer probes. 

Table 4.1 gives the dimensions of the electrodes and compares the 

estimated thickness of the concentration boundary-layer with the thickness 
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Table 4.1 

Dimensions of the electrodes and experimental range 
for the test of frequency response 

Electrode L(cm) L+ 6+ 
c 6+ s 

* +2/3 
ci) L 

1 .00762 .352-.634 .22-.27 2.5-7.6 .23-1.4 

2 .0127 .587-1.06 .27-.32 2.5-7.6 .32-1.9 

3 .0254 1.17-2.11 .33-.41 2.5-7.6 .51-3.1 

4 .0406 1.88-3.38 .39-.48 2.5-7.6 .69-4.2 

Re= 15,000 - 29,400 

f = .325 - .900 1/sec 

W = .102 cm 
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of the Stokes layer in the range of variables covered by the experiments. 

Here L is the length of the electrode in the direction of mean flow and 

W, the width of the electrode. 

The thickness of the concentration boundary-layer is defined as 

+1/3 
^clx=L = 2-92 -X73 • ^ , (4.24) 

Sc    n 

and the Stokes layer thickness is described in (3.32). 

As shown in Table 1, 5  is one order of magnitude less than 6 
c ° s 

and the viscous sublayer thickness of 6 =5.  Consequently the 

assumption of a linear variation of the velocity within the concentra- 

tion boundary layer is valid. 

The analog signals from the four probes were sampled simultaneously 

and were processed in a manner described in section (4.5).  Figures 4.4 

and 4.6 show the uncorrected amplitudes and phases characterizing the 

variation of the wall shear stress measured with the different probes. 

Here the amplitude |x [ is plotted as 

IT I    |G I 
T(O) = -^   I   —^ (4.25) 

T        U 
W 

SO as to normalize effects of changes in the amplitude of the induced 

flow oscillations.  At low values of the dimensionless frequencies, 

there is reasonably close agreement among the uncorrected measurements 

from the different probes, indicating the validity of the pseudosteady 

state assumption.  However, at high w large differences are noted. 

Figures 4.5 and 4.7 show the results obtained by correcting the 

measurements in Figures 4.4 and 4.6, using the factors in Figures 4.2 

and 4.3.  The good agreement now shown among the measurements from all 
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four probes provides support for the method of correcting for frequency 

response presented in the numerical analysis. 

The effects of the amplitudes of flow oscillation on the amplitude 

of shear stress at the wall are shown in Figure 4.8.  Here a is the ratio 

of the amplitude of velocity variation to the mean velocity at the pipe 

center.  The amplitude of shear stress at the wall is found to increase 

linearly with the increase of the amplitude of the imposed flow 

oscillation.  If the amplitude |T | / T  is plotted as x (0), the same 

results are obtained for different amplitudes of the imposed oscillations. 

This supports the linearization assumption used in deriving (4.11). 

A number of restrictions must be met if wall transfer probes are 

to be used properly in a turbulent flow with imposed oscillations. 

These are summarized below. 

The concentration boundary-layer should be thinner than the viscous 

sublayer if (4.2) is to be satisfied.  This requires that 

^clx+=L+ = 2.92^<5 
Sc 

or that 

'       L < 5 Sc  . (4.26) 

The presence of imposed oscillations adds the additional restriction 

that 6 be less than the thickness of the Stokes layer: 

/ 0) 

or 
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+        + -3/2 
L < 0.11 (u )  '  Sc, (4.27) 

The neglect of the effects of diffusion in the flow direction (Hanratty 

& Campbell, 1983) requires that 

^+  T, _ -1/2 
L > 14 Sc (4.28) 

if errors are to be less than 5 percent. 

Restrictions (4.26), (4.27) and (4.28) must be satisfied if the 

analysis of the time response of the scalar boundary-layer presented 

in this work is to be used.  The restriction imposed by the linearization 

assumption made in the analysis is not as well defined.  The experiments 

described in this study had ratios of the amplitude of oscillation in 

the wall shear stress to the time averaged wall shear stress, |T | / T , 

as high as 0.6.  The successful experience in correcting these measure- 

ments suggests that (4.28) might be more restrictive than the linearization 

assumption, regarding the size of oscillations that can be measured.  If 

the oscillations become so large that during portions of the cycle, 

convection is no longer completely dominant over streamwise diffusion 

errors can arise.  From (4.28) 

.+ 
1 -■ 

w' 

w 

1/2 

> 14 Sc 
-1/2 

or 

1 -• 

w 

14 

Sc^/V (4.29) 
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If restrictions (4.26-4.29) are met. Figures 4.2 and 4.3 can be 

used to correct for the frequency response of the concentration 

boundary-layer. 

The numerical analysis suggests that 

+_ 1/3+2/3 
to Sc  L    ^ 1 (4.30) 

if it is desired that the correction on the amplitude is less than 5%. 

This implies that it might be necessary to correct measurements of 

turbulent spectra in the high frequency range.  Fortuna & Hanratty (1971) 

did this and found that the intensity of turbulent shear stress fluctu- 

ations at the wall is 0.349 rather than the value of 0.302 obtained by 

using pseudo-steady state relation (4.7).  The criterion for avoiding 

corrections of the phase angle is more restrictive: 

^+3^1/3^+2/3 < 0 3 ^^_^^^ 

for an error of less than 5". 

The strong effect of Schmidt numbers is evident.  Consider for 

example Sc = 1000, which might be realized with an electrochemical probe. 

Restrictions (4.26) and (4.28) indicate 0.44 < L"^ < 5000. 

If L = 0.44 is used in (4.27) it is found that the thinness of 

the Stokes layer is not a limitation in that frequenceis as high at 

0) = 40 can be studied without violating (4.27).  From (4.31) it is 

found, with L =0.44, that frequencies as high as oj"*" = 0.052 can be 

used without correcting for the frequency response of the scalar boundary- 

layer.  For reference, this is approximately equal to the median frequency 

of the turbulent velocity fluctuations close to a wall or to the bursting 

frequency.  This means that the phase corrections for the frequency 
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response of the scalar boundary-layer will have to be taken into account 

in experiments with imposed oscillations, unless the oscillation has a 

much lower frequency than the turbulent velocity fluctuations. 

4.4 Fabrication of Rectangular Electrode 

A rectangular electrode was built in a plexiglass block which was 

then inserted into the wall of the test section.  The procedure of 

manufacture is shown in Figure 4.9.  A block of plexiglass is machined 

to the configuration as shown in Figure 4.9(a).  The depth of the groove 

at one end is the thickness of the platinum sheet, which is the desired 

length of the electrode.  At the other end the depth of the groove is 

greater, so that it can accommodate the junction of the platinum sheet 

and a copper wire.  The platinum sheet is glued in the groove with 

epoxy (Techkits A-12).  Another piece of plexiglass is glued on the top 

of the sheet as shown in Figure 4.9(b).  After curing of the epoxy, the 

block is machined to the configuration shown in Figure 4.9(c) and 

inserted into a slit which is cut parallel to the pipe axis in the wall 

of the test section.  The block is glued with epoxy in the slit and 

allowed to protrude a little to ensure the electrode is fully exposed 

and yet not leave an inordinate amount of the electrode to be abraded 

off.  The surface of the electrode is sanded and polished progressively 

with wetted 400A, 600A and 4/0 emery paper.  Finally polishing is done 

with Mirror Glaze Plastic Cleaner and Polish.  In this manner, the 

rectangular electrode can be orientated with its longer side perpendic- 

ular to the axial flow direction and mounted flush with the wall. 

4.5 Differential Pressure Measurement 

Since there was a slight difference between the phase and the 

amplitude of the flow oscillation in the test section and the motion 
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(a) 

(c) 

Figure 4.9 Fabrication of rectangular electrode 
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of the pulse generator, it was necessary to measure directly the flow 

oscillation in the test section.  This was done with a differential 

pressure transmitter (Viatran, Model 704-115) having a full scale 

± 2,54 cm water column corresponding to ± 5 volts output.  Two pressure 

taps, 437.4 cm apart, were located on the two ends of the test section. 

For a fully developed pipe flow, p is dependent of x and t, so the 

3x pressure gradient -r^ is only a function of time.  That is. 

If - 1^ (') W-32) 

This measured time variation of the pressure gradient was used, along 

with equation (1.4), to calculate the time variation of the velocity 

at the center of the pipe. 

The dynamic response of the pressure transmitter was determined 

in the following way:  The flow loop was first filled with the solution. 

Then, the flow in the 19.4 cm pipe was oscillated by the motion of the 

piston with diaphragm valve 3 completely closed.  Because of the 

incompressibility of the fluid, the motion in the test section was in 

phase with the piston and the amplitude of the pressure gradient 

variation could be calculated from the piston stroke length and frequency. 

The instanteous differential pressure signals were sampled and processed 

as described in the next section.  Several frequencies and stroke lengths 

were tested.  It was found that the phase lags of the pressure trans- 

mitter was dependent on frequency as shown in Figure 4.10.  It was 9° 

for a frequency of 0.325 Hz and 25° for 0.625 Hz.  The amplitude 

2 
correctxon was dependent on L f , where L is the stroke length of the 

s s 

pump.  Figure 4.11 compares the measured amplitude with that calculated 
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Figure 4.11 Amplitude calibration of pressure transmitter 
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were taken for each run. A sampling program was written for this 

purpose and is given in Appendix III. 

In the measurement of pulsating flow, an optointerruptor on the 

pulse generator was used to provide a pulse of 4 volts when the piston 

reached a certain position in each cycle.  This pulse served as a 

phase reference.  The time between the two consecutive pulses is the 

period of the oscillation.  It was measured with a programmable timer 

(Berkeley, 6401) and sampled through a real time clock board in the 

computer.  Drift of the period of different cycles was found to be less 

than 0.1%.  For each cycle of oscillation, this pulse initiated data 

sampling.  Thirty two or sixty four samples per cycle were taken in 

equal time intervals and a total of 500 periods of data were collected 

on the disc of the computer in each experiment.  At each sampling 

point the probes and the pressure transmitter were sampled at a high 

enough speed so that the measurements for all practical purposes, 

could be considered simultaneous.  A program which controls this sampling 

process is given in Appendix III.      < 

The digitized data were recorded on the disc in a binary format 

in order to save storage space.  During data processing, the binary I 

data were first converted to voltages in decimal format.  These voltage 

data correspond to the output voltages of the electrode circuit and the 

pressure transmitter at each sampling instant.  The output voltage of 

the electrode circuit is related to the velocity gradient at the wall: 

S = e(V ^ - V  )^ , (4.33) 
X     out   app 

according to (4.1) and (4.7), where V   is the output voltage and V  , 

the applied voltage in the electrode circuit.  Parameter B is a constant 

i 
\ 

I 
I 

1 

! 
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for each run.  Therefore, the periodic variation of wall shear stress 

normalized by the time averaged value was obtained as 

<S>  <(V^-V  )^> 
X      out   app ,, ^,. 

—-— = ^"^     . (4.34) 

^x    (V ^ - V  )^ 
out   app 

The intensity of the turbulent velocity gradient fluctuations at 

the wall was given as 

"2 ^ 
(S - <S >)^ 
X       X 

(4.35) 
S S X "x 

and the intensity of the phase averaged turbulent fluctuations, as 

2..^    r ._      _   .21^ (<s^ >)     [< ( S - < S >)^>1 
""    _     ""  (4.36) 

S S 
X X 

The output voltage of the pressure transmitter is proportional to 

the instantaneous pressure drop (2.54 cm water column per volt).  The 

time averaged pressure drop was calculated by the Blasius formula rather 

than from the measured values, because serious errors were caused by 

the large zero drift of the transmitter and the small value of time mean 

pressure drop. 

Phase averages and time averages were calculated on the computer 

in the following manner: 

=^i=^ .^,   ^ij ' (^-37) 
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where <E> are phase averaged data in one period and n, the number of 

periods to be averaged.  Time averaging was done by averaging the phase 

averaged data over one period: 

   T  '"^      ,  m  n 
E = -IE. =— y  TE... (4.38) 

i=l        1=1 j=l  -^ 

where m is the number of samples in one period.  The oscillating 

component was then obtained as 

E = <E> - E . (4.39) 

Only the first harmonic of the oscillation was considered, so the 

amplitude and the phase of the velocity gradient at the wall were 

obtained by a least-square fit of the phase averaged data with a cosine 

function. 

The spectrum of the turbulent fluctuations of the velocity gradient 

at the wall was obtained by a Fast Fourier Transformation (Bendat and 

Piersol 1971).  The analog singals from the wall probe were filtered 

by an analog low pass filter with a cut-off frequency 20 Hz before they 

were sampled by the computer at a rate of 40 Hz.  The cut-off frequency 

was much higher than the medium frequency, f = .01.  Therefore, 

turbulent fluctuations with frequencies higher than the cut-off frequency 

make a negligible contribution to the total energy (Hanratty, et al., 

1977).  The actual sample size for each of FFT was 512.  A total number 

of 20,480 of data points were used, i.e., 40 realizations were averaged 

to give an estimated spectrum.  The spectrum was normalized so that the 

area under the curve is unity. 
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4.7 Experimental Procedure and Range 

Before doing an experiment the solution was circulated between the 

filter and the lower storage tank for eight hours in order to remove 

small particles or dirt.  Then the solution was pumped into the upper 

storage tank and the loop was filled through the downflow pipe line. 

However the piping above the solution level in the tank couldn't be filled 

with the solution.  When the centrifugal pump started, the air inside 

this portion of the piping was pushed into the tank and part of it was 

entrained into the flow loop.  Another origin of the air bubbles in the 

fluid was the decrease of solubility of the air with the increase of 

solution temperature when the solution was circulated through the loop. 

These bubbles, sometimes, stuck on the wall of the test section and 

made measurement impossible.  It took a long time to get rid of the 

bubbles.  The flow was turned on at a high flow rate and then turned 

off to settle for an hour.  This process was repeated several times. 

Sometimes, it was necessary to run the flow for a long time to increase 

the temperature of the solution above the experimental temperature. 

Then the flow was allowed to settle for an hour.  Afterwards, the loop 

was run again and the flow temperature was cooled down to the experimental 

temperature 25 ± 0.1 "C by adjusting the cooling water through the cooling 

coil.  This was a very tedious process, but it was very important for 

obtaining satisfactory data. 

Mean flow rate was adjusted by diaphragm valve 3 and was measured 

by the vortex shedding flow transmitter.  For steady flow measurements, 

at least thirty minutes for stabilizing the flow was necessary before 

taking data.  For the measurements of the pulsating flow, the frequency 
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of the oscillation was adjusted to the desired value and was kept 

constant for at least 500 periods before sampling the data in order 

to reach stationary oscillation. 

The polarization curves of the electrode in the experimental 

range of Reynolds numbers were measured, as shown in Figure 4.14.  These 

suggested the choice of -0.4 volts as the applied voltage to the test 

electrode. 

The wave form of the oscillation was monitored by the differential 

pressure signal on the oscilloscope.  If the pressure signal was distorted 

from a sinusoidal variation, it was likely to that air was in some portion 

of the system.  Data were not taken until the pressure signal showed a 

sinusoidal variation.  The period of each cycle was indicated by the 

programmable timer.  If the drift of the period was greater than 0.1% 

of its value in the experiment, the data were disregarded. 

The experiments were designed to cover a range of oscillation 

frequencies around the medium frequency of the turbulent velocity 

fluctuations in the vicinity of the wall, i.e., u = Zir x 0.01.  This 

was realized by fixing the frequency of the imposed oscillation at 

0.625 Hz or 0.325 Hz and varying the Reynolds number of the mean flow 

from 15,000 to 70,000.  The amplitude of the central velocity variation 

was 10% of the mean velocity for most of the experiments.  However, 

for high Reynolds numbers, an amplitude of less than 10% had to be used 

because of the limited capacity of the pulse generator. An oscillation 

amplitude of 5% was also used at Reynolds numbers of 15,000 and 20,000 

with a frequency 0.625 Hz in order to examine the assumption of a 

linear response of the wall shear stress to the imposed oscillation. 
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The reason for using a small amplitude was to eliminate nonlinear 

effects and, therefore, to make the analysis of the results easier. 

The experimental conditions are listed in Table 4.2.  Several 

dimensionless groups of frequency are also calculated for comparison 

with studies of other researchers. 

Table 4.2 

Experimental Range 

Re f(l/sec) L (cm) 
c   b fi = ^R 

V 
OJD 
—* 
u 

coD 
15 

15,000 0.325 8.7 0.1 149 99 5.9 0.0074 

20,000 0.325 8.2 0.1 149 77 4.4 0.0045 

30,000 0.325 11.9 0.1 149 54 3.0 0.0023 

40,000 0.325 12.7 0.077 149 40 2.2 0.0013 

50,000 0.325 12.7 0.062 149 35 1.8 0.0009 

60,000 0.325 12.7 0.052 149 29 1.5 0.00065 

70,000 0.325 12.7 0.044 149 26 1.3 0.00050 

15,000 0.625 3.2 0.1 207 190 11.4 0.014 

20,000 0.625 4.3 0.1 207 148 8.53 0.0086 

30,000 0.625 6.4 0.1 207 104 5.69 0.0042 

40,000 0.625 8.5 0.1 207 77 4.27 0.0026 

50,000 0.625 10.7 0.1 207 66 3.41 0.0017 

60,000 0.625 12.8 0.1 207 57 2.84 0.0013 

70,000 0.625 12.7 0.086 207 49 2.44 0.00095 
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CHAPTER 5.  RESULTS 

5.1 Numerical Results • 

The numerical scheme was first tested by comparing the numerical 

result for the quasilaminar model A with the asymptotic solution for 

laminar pulsating flow at high frequency.  Figure 5.1 shows velocity 

profiles of the oscillating component, normalized by the amplitude of 

velocity at the pipe center, at eight phases of a cycle at fi = 206. 

Figures 5.2 and 5.3 give the amplitude profiles and the phase profiles 

of the oscillating velocity component for the two frequencies used in 

the present study.  The solid lines represent the numerical results of 

Model A while the symbols are the asymptotic results obtained from the 

analytical solution for high frequencies.  Agreement between the two 

is very good.  This indicates that the numerical scheme used in this 

study is suitable for further studies of the four models described in 

Chapter 3. 

Figures 5.4 and 5.5 give the amplitude profiles and the phase 

profiles of oscillation velocity calculated from four different models 

at Re = 15,000 and f = 0.625 Hz.  This corresponds to the high co"^ 

extreme covered in the experiments.  It is seen that the variation of 

the oscillating velocity is confined to a thin layer close to the wall 

about 0.01 of the pipe radius, which corresponds to y"*" = 5, i.e., the 

thickness of viscous sublayer.  The four models behave very similarly 

because of the negligible effects of turbulence in the viscous sublayer. 

In the range of 0.01 < Y < 0.04 the four models have slight differences 

because they use amounts of oscillation induced eddy viscosity in this 



82 

1.25 

0.75 

0.25 

u 

'=5 

-0.25 -1 

-0.75 • 

-1,25 

Figure 5.1 Oscillation velocity profiles at f2 = 206 
(— numerical solution of Model A 
symbol:  asymptotic solution of laminar 

pulsating flow at high frequency) 



83 

1.25 

1.00 

0.75 
bl 

9 
I- 

I 
0.50 

0.25 

0.00 

o a a a D a o 

O   f = 0.625 Hz 

D   f = 0.325 Hz 

0.4      0.6 
Y»10 

0.8 1.0 

Figure 5.2 Amplitude profiles of oscillation velocity 
(— numerical solution of Model A 
symbol:  asymptotic solution of laminar 

pulsating flow) 



eo 

60 

84 

O   f = 0.625 Hz 

□   f = 0.325 Hz 

-20 
0.0 0.2 0.4 0.6 0.8 1.0 

Y»10 

Figure 5.3 Phase profiles of oscillation velocity 
(— numerical solution of Model A 
symbol:  asymptotic solution of laminar 

pulsating flow) 



85 

1.25 

1.00 

0.75 
UJ 

3 
5f 

0.50 

0.25 

0.00 

0 5        10       15       20       25       30       35       40       45 

Figure 5.4 Amplitude profiles of oscillation velocity for 
different models at Re = 15,000 and f = 0.625 Hz 
(OJVIS = 0.014) 



86 

80 

60 

-20 
0.0 

Model 

  D 

0.2 0.4 0.6 
Y»10 

0.8 1.0 

0 5        10       15      20      25      30       35       40       45 

Figure 5.5 Phase profiles of oscillation velocity for 
different models at Re = 15,000, f = 0.625 Hz 
(C0+/15 = 0.014) 



87 

range.  The models C and D give larger oscillation induced eddy- 

viscosities than models A and B, so that the over shoots of amplitude 

for models C and D are less then models A and B.  The difference 

between model C and model D is caused by the pressure gradient effect 

considered in model D.  In the range of Y > 0.04 the results of the 

four models become closer again.  This is because inertial effects are 

so large in this region that differences in eddy viscosities predicted 

by the four models have negligible influence on the solution. 

Figures 5.6 and 5.7 show the amplitude profiles and the phase 

profiles calculated from the four models at Re = 60,000 and f = .325 Hz. 

The profiles of model A are very similar to that shown in Figures 5.4 

and 5.5, except that the hump in the amplitude profile moves slightly 

away from the wall due to the lower frequency in this case.  However, 

the results from models B, C and D are quite different.  At a Reynolds 

number 60,000 the viscous sublayer is much thinner than at Re = 15,000. 

Although the spatial variation of oscillation velocity is in a thin 

layer of Y = 0.02, the turbulent effects on the flow oscillation are 

no longer negligible because this layer corresponds to y =25.  It 

is seen in Figure 5.7 that the phase of velocity gradient at the wall 

is very sensitive to the different turbulent models.  In the range of 

Y > 0.08 the inertial force controls the flow oscillation and the 

different models show similar results. 

From the comparison of different turbulent models, it is clearly 

seen that the modeling of turbulence in the region of y < 40 is the 

key to understanding turbulent pulsating flow at high oscillation 

frequencies and that the relative thickness of the stokes layer and the 

viscous sublayer is a measure of the importance of turbulent effects on 
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the flow oscillation.  It is also found that the wall shear stress is 

very sensitive to the turbulent modeling.  These types of numerical 

results will be compared with experimental data in section 5.3. 

5.2  Experimental Results 

(a)  Instantaneous velocity gradient at the wall 

Figure 5.8 shows typical measurements of the streamwise components 

of the instantaneous velocity gradient at the wall for a Reynolds number 

30,000.  In Figure 5.8(a), the time averaged value is subtracted from 

the instantaneous value, so the signal represents a summation of the 

oscillation component and turbulent fluctuations.  Since turbulent 

fluctuations at the wall are large, the organized part of velocity gradient 

is buried in random fluctuations.  However, the periodic variation can still 

be distinguished when the signal is compared to the ticks, representing 

the time period of the flow oscillation, in Figure 5.8(a).  It is 

observed that the period of the organized variation in 5.8(a) is of the 

same order as the period of the characteristic turbulent fluctuations in 

a steady flow at the same Reynolds number 30,000, shown in Figure 5.8(c). 

This is expected since the imposed oscillation frequency, 0.625 Hz, was 

chosen to match the characteristic frequency of the turbulent fluctuations 

in the vicinity of the wall at Reynolds number 30,000. 

In Figure 5.8(b), phase averaged values are subtracted from the 

instantaneous signals, i.e., the oscillation component is removed from 

5.8(a).  The signal in Figure 5.8(b) represents the turbulent fluctuations 

of the velocity gradient at the wall in the pulsating flow.  A comparison 

5.8(b) with 5.8(c) shows no major differences.  This indicates that for 

imposed oscillations of small amplitude, the interaction between the 
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turbulence and the imposed oscillation is not clearly seen, even though 

their frequencies are similar. 

Power spectra of the instantaneous signals are shovm in Figure 5.9. 

The sharp peak at a frequency 0.63 Hz in Figure 5.9(a) represents the 

contribution of the imposed oscillation to the total energy.  Figure 5.9(b) 

shows the spectrum of turbulent fluctuations of velocity gradient at the 

wall after removing the phase averaged values from the instantaneous 

signals.  Figures 5.9(c) is the spectrum of turbulent fluctuations of 

the velocity gradient at the wall in steady flow at a Reynolds number 

30,000.  No major difference is observed between Figures 5.9(b) and 4.9(c). 

This would seem to suggest that the turbulent properties are not affected 

by the imposed oscillation. 

The peaks at frequencies 13 Hz and 3 Hz are considered to be 

caused by some unknown disturbance in the flow system, because the peaks 

appear at the same frequencies in the steady flow at different Reynolds 

numbers. 

(b)  Time averaged values of the velocity gradient at the wall 

Figure 5.10 shows the measured time averaged values of the velocity 

gradient at the wall at different flow conditions.  It is observed that 

the imposed oscillation has no effect on the time mean velocity gradient 

at the wall. 

Intensities of turbulent fluctuations of the velcotiy gradient at 

the wall are shown in Figure 5.11.  The intensities are the results of 

long time averaging, and are noticed to be independent of Reynolds 

number and of imposed flow oscillation.  The value, 0.35, agrees with 

previous measurements by other researchers (Sirkar 1969, Fortuna and 

Hanratty 1971, Eckelman 1971). 
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The results that have been presented here indicate that time averaged 

properties in a pulsating flow are not different from those observed in a 

flow without pulsations.  These agree with the findings by most of 

previous investigators and serve as a base to separate the oscillation 

flow field by simply subtracting the mean flow field, which is the same 

as the steady flow, from the phase averaged flow field. 

(c)  Phase averaged values of the velocity gradient at the wall in a 

pulsating flow 

Figures 5.12 to 5.26 give a set of phase averaged data measured at 

different flow conditions in the experimental range.  In each figure, 

the phase averaged favorable pressure gradient normalized by its time 

mean value is given in (a), the phase averaged vleocity gradient at the 

wall or wall shear stress normalized by its time mean value is shown in 

(b) and the phase averaged intensity of turbulent fluctuations of velocity 

gradient at the wall is plotted in (c).  The abscissa is the phase in a 

cycle, referred to the trigger signal from the piston as described in 

Chapter 4.  The data, which are the phase averaged results for the 

instantaneous signal over 500 periods, have been corrected for errors 

caused by the frequency response of the sensors.  In the following, two 

extremes in the experimental range will be discussed in detail. 

Figure 5.12(a) shows the phase averaged pressure gradient measured 

at a Reynolds number of 15,400 using an imposed 0.625 Hz oscillation 

which has an amplitude 10% of the central mean velocity.  It is seen 

that the amplitude of the pressure gradient oscillation is very large 

in this case, about eighty times its mean value.  This is caused by the 

relatively high frequency of the oscillation and the low time mean 

velocity.  This case represents one extreme in the experimental range. 
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i.e., a low Reynolds number and a high frequency oscillation.  The solid 

line is the least square fit of the data with a cosine curve.  It is 

seen that most of the energy of the flow oscillation is contained in a 

single harmonic. 

Figure 5.12(b) shows the phase averaged vleocity gradient at the 

wall, normalized with its mean value.  The 50% variation of velocity 

gradient at the wall, compared with the 10% variation of the central 

velocity, arises because the spatial variation of the oscillation 

velocity is confined to a thin layer close to the wall for this high 

frequency case.  The data are fit quite well with a cosine curve which 

is shifted about 54° relative to the curve describing the pressure 

gradient.  This indicates a linear response of the phase averaged flow 

field to the imposed pressure variation.  A linear response is also 

indicated from experimental results shown in Figure 5.13, which were 

obtained with a 5% variation of the central velocity.  The amplitude 

of pressure gradient is about fourty times that of the mean and the 

amplitude of velocity gradient is one half of that indicated in Figure 

5.12(b).  The phase shifts of the velocity gradients are the same for 

both cases. 

It is interesting that phase averaged intensities of turbulent 

fluctuations are highly nonlinear, as shown in Figure 5.12(c), even 

though their time average is the same as in steady flow.  This nonlinear 

effect seems to be related to the amplitude of the imposed oscillation. 

For example, the nonlinear effect is not as obvious in Figure 5.13(c) 

as it is in Figure 5.12(c).  It is of interest to note that the maximum 

value of intensity occurs close to when the pressure gradient has its 

maximum favorable value, and the minimum, close to when the maximum of 
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unfavorable pressure gradient occurs.  This contrasts with the finding 

for boundary layer flows that turbulence near the wall is suppressed 

by a favorable pressure gradient and enhanced by an unfavorable pressure 

gradient.  These results indicate that the turbulence does not respond 

immediately to a high frequency oscillation of the pressure gradient. 

Figure 5.25 shows another set of data at a Reynolds number 60,000 

and a frequency 0.325 Hz.  The amplitude of the central velocity 

oscillation is about 5%. This case represents another extreme in the 

experimental range; that is, a high Reynolds number and a low frequency. 

In Figure 5.25(a), the amplitude of the pressure gradient is seven times 

its time mean value and there is some scatter of the data.  However, 

the data still clearly show a sinusoidal variation if only the first 

harmonic is considered.  Phase averaged data of the velocity gradient 

at the wall are shown in Figure 5.25(b).  For the same 5% amplitude of 

central velocity variation, the responses at the wall for the two 

extremes of the experiments are quite different, as can be seen by 

comparing Figure 5.13(b) and 5.25(b).  For example, the amplitude of 

the velocity gradient is about 6% and the phase shift is 67° in this 

case rather than about 25% and 54° in the case of low Reynolds number 

and high frequency.  The intensity data shown in 5.25(c) are more 

scattered.  However, a sinusoidal variation can still be distinguished. 

It is interesting to note that in this case the minimum value of the 

intensity occurs close to the maximum favorable pressure gradient and 

the maximum occurs near the maximum of unfavorable pressure gradient. 

This indicates that high frequency turbulence that occurs at large 

Reynolds number can adjust to a slow oscillation of the pressure 

gradient. 
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Some general trends can be seen from this set of figures.  For 

a fixed oscillation frequncy and amplitude of the central velocity, the 

normalized amplitude of pressure gradient decreases as the Reynolds 

number increases; so does the amplitude of wall shear stress.  This is 

very different from the results of laminar pulsating flow, which depends 

only on the dimensionless frequency Q.     This difference can be attributed 

to the strong effects of turbulence on the flow oscillation.  For the 

same Reynolds number and amplitude of flow oscillation, a higher 

oscillation frequency gives higher an amplitude of the variation of the 

wall shear stress.  The amplitude effect is linear when it is small, as 

shown in Figures 5.12, 5.13 and 4.8. 

At large Reynolds number the imposed oscillation is found not to be 

perfectly sinusoidal.  This is attributed to the use of a large stroke 

length, which is necessary to maintain the same amplitude, as shown in 

Appendix IV. 

It is difficult to draw any quantitative conclusion from the 

scattered intensity data.  However, it seems that certain qualitative 

trends can be recognized.  For both imposed frequencies studied, the 

nonlinear response of the phase averaged turbulent intensity of the 

wall shear stress exists at low Reynolds number or high m  .     This non- 

linearity becomes smaller as Reynolds number increases and as the 

amplitude of imposed oscillation decreases.  At high oj the variation 

of the phase averaged intensity is roughly in phase with the favorable 

pressure gradient.  At about u /15 = 0.002, the periodic variation of 

the intensity is hardly seen, and a further decrease of co the variation 

of the intensity in a cycle become clear again but its phase is roughly 

180° out of phase with the favorable pressure gradient. 
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In summary, the phase averaged data indicate that the velocity 

gradient at the wall responds to the imposed flow oscillations differently 

at different flow conditions. 

5-3  Comparison of the Experimental Data and the Numerical Results 

The velocity gradient at the wall shows a linear response to sinu- 

soidal imposed oscillations of small amplitude.  Its variation can be 

characterized by an amplitude and a phase shift relative to the imposed 

oscillation.  Figures 5.27 and 5.28 summarize the experimental results 

obtained under different flow conditions.  The phase shifts are plotted 

relative to the variation of the central velocity, which lags the 

pressure gradient by 90°, as described in equation (1.6).  The amplitude 

|S^1 / S^ is normalized by |u | /u  to take account of the effect of 

using different amplitudes of oscillation.  The correlation is similar 

to what was used by Abrams and Hanratty (1984) to characterize the 

spatial variation of shear stress along a wavy surface.  The abscissa 

w /15 corresponds to the a = 2ITV/AU used by Abrams and Hanratty (1984). 

The 15 is the dimensionless turbulence convection velocity in the viscous 
+ 

wall region.  For fixed frequencies, an increase of j^  corresponds to a 

decrease of Reynolds number.  Consequently, the data show that the 

phases and amplitudes for fixed frequencies are changing with Reynolds 

number.  It is noted that the results obtained for the two frequencies 

studied fall on the same curves when plotted in the manner shown in 

Figures 5.27 and 5.28.  For reference, the data obtained by Ramaprian 

(1983) are also plotted in Figures 5.27 and 5.28.  The experimental data 

for all runs are tabulated in Appendix I. 
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In Figures 5.27 and 5.28 numerical results obtained with the 

different models described in Chapter 3 are compared with the data.  When 
+ 

jj >  0.01, the results of all models approach that predicted by a quasi- 

laminar model.  Only Model D with k^ = -25, k = 3500 predicts the rapid 

change of phases and amplitudes in the range j^ = 0.0005 - 0.002.  It is 
+ 

interesting to note that this range of j^  is the same range of a"^ in 

which the phase angle characterizing the wall shear stress variation along 

a wavy surface undergoes a rapid change.  These results suggest that the 

change of phase in this range for the two different types of flows can 

be attributed to the same relaxation phenomenon. 

However, none of the models are able to predict the experimental data 

in the range of — > 0.02.  This suggests that the models fail to predict 

the experimental results if the imposed oscillation frequency is close 

to or greater than the median frequency of the turbulence in the vicinity 

of the wall, j^ = 0.042,  The experimental results indicate that at 

these high frequencies turbulence is still affecting the imposed 

oscillations. - 

No reliable measurements of the oscilation velocity profile were 

obtained in this study.  Attempts were made to use a mass transfer probe 

to measure the velocity in the fluid.  Unfortunately, contamination of 

the surface of the sensor wire made reliable measurement impossible. 

Moreover, the interaction between the wall and the sensor wire might 

cause large errors in the measurement close to the wall.  Therefore, the 

ability to predict the oscillation velocity profile for the four models 

is checked by comparing the numerical results with the measured LDV data 

by Ramaprian and Tu.  The data were taken at Re = 50,000 and f = 3.6 Hz 

in a water pipe flow with a pipe diameter of 5 cm.  This flow condition 
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corresponds to the lowest o) in the present experimental range. 

Figures 5.29 and 5.30 show these comparisons for the amplitude and the 

phase of the oscillation velocity in the wall region.  It is seen that 

Model D does the best job and agrees with the data very well. 
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CHAPTER 6.  DISCUSSION 

This thesis reports on measurements of the time variation of the 

phase averaged wall shear stress caused by the imposition of controlled 

sinusoidal oscillations on the flow of a turbulent fluid through a pipe. 

Results are presented for a range of dimensionless frequencies, to , higher 

than had been presented by previous investigators.  By using a small 

amplitude of imposed oscillation a linear response is obtained whereby 

the wall shear stress variation is described by a single harmonic with 

the same frequency as the imposed oscillation and with an amplitude which 

varies linearly with the amplitude of the imposed oscillation.  The 

measurements can therefore be characterized by a relative amplitude and 

a relative phase. 

It is found that these measurements, with two different frequencies 

and a range of flow rates, are correlated with oj .  This contrasts to 

the characterization of turbulent oscillating flow by toD/u^, suggested 

by Jayaraman, et_ al. (1982), and by wD / u , by Ramaprian and Tu (1983). 

The influence of frequency at high frequencies can, therefore, be studied 

either by changing the flow rate or by changing the frequency. 

+   v^   V 
The dimensionless frequency is defined as w = —r^r / — or as 

+ 2 * " 
cj = 2(6 /6 ) , where 6  = v/u  is the length scale of the viscous sublaver 

V  s v 

and 6  = / 2v/a)  is the thickness of the Stokes layer.  Consequently, for 

(jj > 0.08 (or 0) /15 > 0,0053) the Stokes layer is thinner than the viscous 

sublayer, and it might be expected that turbulence will have a small effect 

on the imposed oscillations.  However, it is to be noted that measured 

amplitudes are much lower for o) > 0.08 than what is predicted for a quasi- 

laminar behavior.  This result was unexpected and is not yet understood. 
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Considerable work was done (Mao and Hanratty, 1984) to examine the 

frequency response of the wall probes.  The consequence of this work is 

that the possible errors involved in correcting for frequency response 

are far less than the difference from the quasi-laminar solution shown 

in Figure 5.28.  The measurements of the oscillation induced variation 

in the wall shear stress would suggest the possibility that the result 

could be due to some nonlinear effect.  This explanation is ruled out 

since the same results have been obtained with two different oscillation 

amplitudes, as shown in Figures 5.12 and 5.13.  Furthermore, measurements 

of the velocity field very close to the wall by Jayaraman, et^ al. (1982) 

and by Binder, et al. (1982) also seem to suggest lower oscillation 

amplitudes at high frequencies that would be calculated by the quasi- 

laminar model.  Consequently, we conclude that oscillation induced varia- 

tions of the turbulence in the viscous wall layer, not taken into account 

by present theories of turbulence, occur in the viscous sublayer at high 

0) .  However, these variations appear to have no measurable effect on 

the time-average velocity (Figure 5.10) or on the time-averaged turbulence 

properties. 

It is to be noted that the medium frequency of the turbulence is 

oj /15 = 0.004.  Thus, the effect discussed above appears to occur when 

the imposed oscillation is equal to or greater than the dominant frequency 

of the turbulence.  This result seems consistent with the suggestion by 

Mizushina, et al. (1973) that significant changes in the turbulence 

structure occur when the frequency of the imposed oscillation is the same 

as the bursting frequency of turbulence. 
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0) 
For Y5 < 0.0021 the dimensionless Stokes layer thickness is greater 

than eight wall units, 6 - 8.  One would not expect a quasi-laminar 

model to be applicable.  The strightforward application of a turbulence 

model developed for flow over a flat surface (Model C) is not capable 

of describing the experimental resutls, and, in particular, the sharp 

change of the phase angle over a rather narrow range of u .  However, 

the use of a model (Model D) which argues that flow-induced oscillations 

in the pressure-gradient can enhance (unfavorable pressure gradient) or 

dampen (favorable pressure gradient) turbulence in the viscous wall 

region (y < 40) does appear to describe the results.  In fact, the para- 

meters, k = -25 and k^ = 3500, chosen to fit the experimental results 

are very close to those used by Loyd, Moffat and Kays (1970) to 

describing boundary-layer flows and by Abrams and Hanratty (1984) to 

describe flow over a wavy surface. 

According to Model D the sharp change in phase angle is associated 

with a relaxation phenomenon, whereby the turbulence does not respond 

immediately to the oscillation induced variation of the pressure gradient. 

Some support for this interpretation is obtained from the measurements 

of the oscillation induced variation of the mean-square values of the 

turbulence fluctuations in the wall shear stress.  At low oj it is about 

in phase with an unfavorable pressure gradient while at high oj it is 

about in phase with a favorable pressure gradient (see Figures 5.12, and 

5.25). 

Of particular interest, from the viewpoint of the initial objective 

of these experiments, is the observation of a change of phase angle over 
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a range of co /15 approximately equal to the range of dimensionless wave 

number, a , for which similar change was observed in the measured spatial 

variations of the wall shear stress along a solid wavy surface.  This 

suggests that the same mechanism is operative and that the two experiments 

can be compared by using the convection velocity of the turbulence 

fluctuations in the viscous wall region. • 
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CHAPTER 7.  CONCLUSIONS AND RECOMMENDATIONS 

This thesis reports experimental and numerical results on how the 

wall shear stress responds to an imposed flow oscillation with small 

amplitude in a frequency around the median frequency of turbulent 

fluctuations at the wall.  The results are summarized as follows: 

a. There exists a linear response of the wall shear stress to the 

imposition of a small amplitude flow oscillation.  The time 

averaged values of the wall shear stress are not affected by 

the imposed oscillation. 

b. The amplitude and the phase of the wall shear stress, which 

characterizes the wall response, are found to be correlated by 

a single parameter oj , which combines the effects of frequency 

and Reynolds number in the range of variables studied. 

c. Relaxation of turbulence to the variation of pressure gradient 

in the wall region is found similar to what has been observed 

for flow over a wavy surface, whereby the phase angle which 

characterizes the temporal variation of the wall shear stress 

undergoes a rapid change over a rather narrow range of w . 

Model D which takes account of this effect with two parameters 

k, = -25, k^ = 3500 fits the data very well in this range. 

+ 
d. When w is close to or greater than the median frequency of the 

wall turbulence, the measured amplitude of wall shear stress is 

definitely lower than predicted by all the models.  There appears 

to be an interaction between the imposed flow oscillation and 

turbulent fluctuations in the viscous sublayer, which is not 

described by present theories of turbulence. 
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The present work is a preliminary step toward the understanding of 

the interaction between a turbulent flow and an imposition of flow 

oscillation.  Several interesting problmes emerge from this work for 

further studies: 

a. In order to get a physical understanding of the relaxation 

phenomenon it is necessary to model the flow in a more fundamental 

way such as suggested by Nikolaldes and Hanratty (1983). 

b. The mechanism leading to the lower amplitude of wall shear stress 

at large oj needs to be explored both experimentally and 

theoretically. 

c. At high oj and at larger amplitudes than used in this work, the 

determination of the effect of increasing amplitude on the flow 

is of great interest, since there might exist nonlinear interaction 

between turbulence and flow oscillation. 

d. The determination of how the flow field can be affected by an 

Imposed disturbance is of practical importance.  Nonsinusoidal 

flow oscillations could be a means of achieving this without 

going to unduly large flow oscillations. 
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APPENDIX II.  Derivation of Finite Difference Methods for 
Variable Grids and Computer Programs. 

(A)  Finite difference of variable grids. 

A function of U(y) is approximated by a second order pol3momial as 

U(y) = a. + b.y + c.y , y._^ ^ y ^ y.^^ (II.1) 

If the values of the function U(y) are known at Y._-i,  Y-   and Y^^i? the 

coefficients a., b., c. can be determined by solving following system 
2       3       3 

equations: 

1 

1 

1 

h-1 

'3 

2 
r, 
J- 

2 

^J-1 

J+1 ^j+1 

a. 
3 "j-i 

b. 
3 

= U. 
3 

^j "j« 

(II.2) 

i.e. , 

a. 
J 

^JLZitL u. , + 
(yj-i-y^xyj-i-^j+i)  j-i 

''1-1''w  J_i J_L±   U 

(y. -y^.iXyj -Yj+i)   3 

^IZJZL 
^Vi'^j^Vi"^j-i^   ^■'^ 

b.  = - "i  ^ "i-M ^i-1 -^ ^i+l 
(y^.i - y-jXyj-i - y.+i)  J-i    (y^ - y^-i^^yj - y^+i)  J 

y- + y. 1 
j .1-1 u., 

(y.+i-yjXy^+i-yj.i)   j^i 
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c. = 
j     (y. 

u. , + 
-i-y^xy^.i-y^+i)  J-i    (y^ -3^j-i)(yj - Vi)  ^ 

Vi-^3^^Vi-^j-i^  ^^' 
(II.3) 

From (3.55) the differences between two adjacent grids are 

Y. - Y. ^ = AY^ E J-2 

J-2 
Vl - ^j+1 = - ^^1 "-^   (H + 1) 

Y... - Y. = AY, H-^ ■'■ 
j+1   3    1 (II.4) 

The first and second derivatives of U(Y) are then approximated as 

_9U 
3Y 

= b. + 2C.Y. 
Y     J     2   2 

2 

H(H + 1) ^     H       H+1 /  AY^.H^ ^ , (II.5) 

and 

a^u r^V 2U.      2U.   , 
J  1         2-1 

»Y^ L H(H + 1) H           H+1 
Y. 

J 

/ AY H^ j-2 (II.6) 

The computer programs calculating oscillating flow fields from 

Models A to D are as follows: 
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c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

10 

40 

c 
c 

80 

70 

this p 
cronk- 
i nput; 

output 

rogram 
n i c 1 son 
re re 
vis V i 
f r f r 
ns t i 

rds 
ra 
St 

hk  fa 

npi 
bt 

progra 
d imens 
(j imens 
pi=4,H 
pr i nt^ 
readJt, 
pr I ntH 
read*, 
w=2. *+p 
ymax=. 
us tar = 
pr i ntw 
read**, 
hl=sqr 
n i=a lo 
pr i nt** 
ymax=h 
hi=hl/ 
i ni t i a 
do 10 
y< i) = h 
s t=r^ts 
u( 1)=0 
do 40 
tmp=:-s 
u( i )=- 
u(n i > = 
pr i nt** 
dt=2 * 
l=n5/3 
r=ymax 
st=sqr 

or003 
for021 

ve 
for071 
for072 
for073 
for05l 

ti 
m moda 
ion u(2 
ion uf < 
a tan( 1. 
;'type 
re,vis, 
,'enter 
r 
iwf r 
099436* 
ymax/r 
, 'enter 
bt, hk 
t(^.*vi 
g10(yma 
, 'ymax= 
m(hkH* 
ymax 
1 condi 
1 = 1,n i 
I*(hk** 
q r t ( w / V 

solves quasi-laminar pulsating pipe flow using 
implicit scheme, 

ynolds number 
scos i ty 
equency of oscillation 
me steps per period 
periods to be proceeded 

tio of first grid size to the thickness of 
okes layer, 
ctor of geometric series of grid size 

.dat (x,2el3.5)  wall shear stress variation 

.dat — for028.dat  <x,2el3.e) 
loclty profile at 8 different phases 
.dat(X,gl3.S,X,gl3.6>   y(j>,amp 11tude 
. dat ( X, gl3. 6, X, gl3. 6)   y(j),phase 
.dat<x,gl3.S,X gl3.S)   y<j),zavg 
.dat < X,2gl3.6) — on 
me variation of u at y(j) 

00),y(200),a Ifa(200), bata<200), duy(33) 
33,^00),uff<33, 2) 

in re,vis,fr,ns/perlod,nprds' 
fr,ns,nprds 
rad lus of pipe' 

re**.375 

bt, hk ' 

s/w)*ustar/bt 
x*(hk-l)/hl+l)/aloglO(hk)+l 
',ymax, ' jmax=',ni 
(ni-l)-n/(hk-l) 

t ion 

(i-1 )-l)/(hk-l) 
is > 

i=2,ni- 
t»y(i ) / 
sqrt(1. 
u(ni-l) 
,u< 1 ),u(2),u<3),u<4), u(5) 
p i /ns 

sqrt(2.) 
/(l.-y(l)))*exp(tmp)*sln(tmp) 

/us tar 
t(w/V i s )*r 

calculate velocity profile at new time level 
do SO mt=l.nprds 
do 60 k=l,32 
do 70 1=1,1 
ip=<mt-l)*ns+(k-l)*l+i 
a Ifa(1)=0. 
bata(1)=0. 
call tri(2,ni-l,hl,hk,y,r,st,dt,alfa,bata, lp,u) 
u(ni )=bata(ni-l)/(1.-aUa(ni-l )^ 
do 80 j=l,ni-2 
n=ni-j 
u(n)=alfa(n)*u(n+l)+bata(n) 
u( 1 )=0. 
cont i nue 
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30 
60 
50 

c 
c 

100 
1 10 

255 
C 
c 

451 

195 

190 

13S 

510 
51 1 
■3 00 
501 

if(mt.ne.nprds) go to SO 
do 95 j=l,2 
uf f ( k, j )=u{j + 1 ) 
do 90 ,j = l, n I 
u F ( k , j)=u < j) 
continue 
continue 
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ca 
do 
du 
de 
wr 
f 0 
du 
ca 
an 
wr 
wr 
wr 
f 0 
ca 
CO 
do 
u( 
u( 
ca 
te 
do 
do 
u( 
u( 
ca 
an 
wr 
wr 
'V f 
CO 
pr 
re 
iF 
pr 
re 
JT 
11- 

J = J 
ao 
nk: 
do 
i I- 
n=: 
do 
wr 
Fo 
CO 
CO 
CO 

cu la 
100 
( k ) = 
= kHi 
te(3 
ma t ( 
(33) 
I da 
d=90 
t9(3 
t9( 3 
te(3 
mat ( 
cu la 
pone 
451 
)=uf 
3}=u 
1 da 
p = an 
190 
195 
)=uf 
3 ) =u 
1 da 
d=an 
te( 7 
te(7 
te(7 
t I nu 
n t*, 
d^, n 
ncr. 
nti+, 
a* , y 

te shear stress variation at the wall 
k=l,32 
2. #uff(k, 1 )/(hlwst^st > 
1.25 
, 110 > d e g, d u y < k ) 
x,2el3.5) 
= duv< 1 ) 
t f i t ( d u y, z a V g, a m a g, a n g d > 
.+angd 
,255) y( 1),amag 
,255) y(l),anqa 
, 255) yd ), zavg 
X, gl3. 6, X, gl3. 6) 
te amplitude and phase profile of oscillating 
ntof velocity. 
i=l,32 
(i,ni ) 
( 1 ) 
tf1t(u,zavg,amag,angd) 
gd 

tF it(u,zavg,amag,angd) 
ad-temp 
,255 > y(J),amag 

2,255) y(1),angd 
3,255) y(j),zavg 
e 
'do you want u profile in 8 phases ? 0 yes. 1 no 
cr 
ne,0) go to 501 
'enter y/r (the y where the profile ends)' 

to 

■io 
;0T- 

51 
te 
ma 
11 
11 

j ) .gt.ys ) go to 187 

r3G 

0 1 = 1, S 

1 
1 j=l,nk 
(n,510) y(j) 
t ( X, g13. b, X, 
nue 
nue 
nue 

,uf(i i 
gl3.S) 

j) 

120 

1 :• 0 
131 

23 

pr I nt?♦, 
readit, n 
1 f ( n 11 
n = 50 
or I n t^, 
readit, j 
n = n+ 1 
0 0 130 
u ( k ) = u f 
U ( k + I ):: 
d 9 g = k »♦ 1 
w r 11 e ( n 
f Q r m a t < 
p r 1 n t -^ , 
reao^.h 
i f ( n t s t 
cont i nu 
stop 
end 

'do you want time variation of u at y<J) ? 0 yes 

ne 0) go to 123 

'which y/r?   type in j' 

k=l,32 

1. 25 
, 131 ) deq,u(k + l ) 
:■( . 2gl3. 6) 
' a 0 ■ j n "^ y e s 0, n 0 1 ' 
t s t 
.eq.0) go to 120 

1 no' 
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(C) Model B 

c this program solves pulsating flow field by using model b. 
c crank-niCO 1 son implicit scheme is used. 
c 
c input.re    reynolds number. 
C vis   viscosity. 
C f r    f requency, 
c ns    time steps per reriod. 
c rO   rad ius oF pipe. 
c bt    ratio of first grid size to the thickness of 
c stokes layer. 
c output: 
c for021.dat< Ix,f13.3, Ix,4gl3.6, 13) fr,wpp,amag,angd, 
c temp, i tr2 
c results of wall shear stress. 
C fr     frequency 
c wpp   dimensioless frequency<wp lus/lS). 
c amag   amp 1 i tude. 
c anga   phase(related to central velocity). 
c temp   phase of central ve locity(re lated to 
c pressuregradient). 
c itr2   number of iteration 
c for07l.dat ( x, q 13. 6, x, g 13. 6) y(j),amag 
c amplide prof ile. 

c 
c 

amp 1 ide pi 
< X, gl3. S, ; 
phase prof 

c for072.dat < x, g 13. S, x, g 13. 6) y(j>,angd 
"" i f i 1 r 

program modb 
dimension u(300),y(300),a 1fa(300),bata(300),du(33),oId<130) 
dimension uf(160,300),a(300)^ b(300),c<300), strss(160) 
dimension vtl (300),vtS(300)^f1(300),dfI(300),dy(300),fra(2) 
dimension v(300),f2(300),df2(300),f i1(300),f12(300),reyd(20) 
pl=:4 }tatan( 1. ) '  ' 
print** ' type i n bata ' 
readit, bt 
prints, 'type in re,vis,fr,ns,hk ' 
readH,revis,fr,ns,hk 
prints, 'lype in radius of pipe ' 
read^,rO 
r = rO 
w=2.^p i*f r 
ymax = . 099436**re^t+t. 875 
us=ymax/r0 
h 1 = s q r t ( 2. H V 1 s / w ) ♦♦ u s / b t 
ni=alogl0(ymax«(hk-l)/hl+l)/aloql0(hk)+l 
ymax = hlj*( hk^tH ( ni-l )-l )/( hk-l > 
hl=h1/ymax 

c      initial cond i t i on 
do   10   i = l,ni 

10 y(i)=hlH(hkH»(i-1)-l)/(hk-l) 
s t = rOitsqrt ( w/v i s ) 
u(1)=0 
do 50 i=2,ni-i 
tmp=-st^y(i)/sqrt(2. ) 

50   u( i )=-sqrt ( 1. / ( 1.-y( i ) ) )*texp( tmp)^sin( tmp) 
u ( n i ) = u (^ n i -1 ) 
do 55 i=2,n i 

55   dy(i)=hlHhkH#(i-2) 
hkl=l./(hk+1.) 
hkkl = l. /(hkJ*(hk + l) ) 
dt=2.*pl/ns 
l=ns/32 
r=ymax/us 
5 t = 5qrt ( w/vi s )*tr 
call vt(y,us,r,mini,min2,ni,vis,vt1,vt2,f1) 
do 65 1 = 1,mi nl 

65    f1( i)=vtl(j ) 
do So j=minl+l,ni-1 

60    fl(j)=vt2(j) 
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70 

80 

90 

ISO 

171 
170 

400 

410 

420 
190 
180 

430 

440 

451 

450 

do 70 j=2,ni-1 
finj>=fi<j) 
cont 1 nue 
f1(1>=0. 
fil(l)=0. 
f1(ni > = f1(ni-1) 
f i Knl )=f l(ni-l) 
do 80 j=2,ni-1 
dfl<j) = (hkkiHfi<j + i)-hkHhkUfl(i-l) + (hk-l)**fl(j)/hk) 
/dy( j ) 
cont1nue 
do 90 j=2,ni-1 
dfl(j > = (dfl(j)-(1. 
f1(J) = (1.+f1(j) )/( 
cont i nue 
uf r=usJtv i s 
wp=w^v is/(ufr^tufr) 

+ f KJ) 
st^st) 

>/( 1.-y(j)>)/(stH5t) 

wpp=wp/15. 
ub = re*v i s/ < 2. *tr ) 

ap=wp/15. 
160 i=2,ni-1 

tmpl=f1(j)/(dy<j)#dy( i)) 
tmp2=dfHj)/(2.4dy(J)T 

alf 
do 

.(! a<j)=-dtHAkkH*<tmbl+tmp2) 
b(j) = l. +(tmpl-tmp2H(hk-l) )itdt/hk 
c( J )=dtHhkU(-tmpl + hk#tmp2) 
cont i nue 
itr2=l 
d 0   171   i = 1, n s 
old(i )=0. 
do   180   k=i   32 
do   190   1 = 1, 1 
ip=<k-l)^l+i 
do   400   j=2,ni-1 
d = dtJ+cos( ( ip-  5)i*dt)-a< i)^tu( j + l) + <2. -b( j) >^*u( j>-c( J>Hu(J-l) 
alfa( j)=-a( j)/(b( j)+c( j5Halfa( J-1) ) '' J J J   *' 

J 

-alfa(ni-1 ) ) 

bata<j) = (d-c(j)^bata(j-l))/(b(j) + c(j)i*alfa(j-l)) cont i nue -   w      j 
u ( n1)=bata(ni-1 ) /( i 
do 410 j=l,ni-2 
n=ni-j 
u(n>=alfa(n)^u<n+l>+bata<n) 
kk=(k-l)ni+i 
do 420 j=l,ni 
uf(kk,j )=u(j ) 
cont i nue 
cont I nue 

calculate shear 
do 430 i=l,ns 

»tuf ( 
ns 
)-old(i) 
00001)go 

stress 

, 2)/<hl#stJ*st) 

variation at the wall from eqmod 

1 
to 445 

strss(i)=2 
do 440 i=l 
def=strss( 
i f(def.gt. 
continue 
do 451 i=l 
i i = i*t 1 
du(i)=uf(i 
du(33)=du( 
ca I 1 datf i 
temp=:anqd 
do 450 1=1 
il=iHns/32 
du(i )=strss( i 
du(33)=du(1 ) 
call datfit(du,zavg,amag,angd) 
amag=amagif5. 02336^* ( s twrO/r )#^2/ 
anga=anqo-temp 
*'^^^®^^i*.255) f r, wpp, amag, angd, temp, itr2 

_  32 

i, n i) 
1) 
t(du zavg,amag,angd ) 

32 

i) 

renn. 875 

to 47fe 
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445   do 442 i=l,ns 
442   0ld(i) = str55(i ) 

itr2=itr2+l 
go to 170 

255   format{lxfl3.3,lx,4gl3.6,13) 
c      profile of amplitude and phase of u 
47G   do 475 j-2,  ni 

do 470 1=1,32 
i i = iH 1 

470   du(i >=uf( 1 i, J ) 
du(33 )=du( 1 ) 
call datfit(du,zavg,amag,angd ) 
angd=anqd-temp 
write(71, 161) y< J),ama( 
write<72, 161) y< j ),angi 

161 f ormat ( X, gl3. 6, X, gl3. 5) 
475   cont i nue 

stop 
end 

(D)  Model C 

c this program solves pulsating flow field by using model c. 
c crank-niCO 1 son implicit scheme is used. 
c input:  re reynolds number. 
c V i 5 V i scos i ty. 
c fr frequency. 
C ns time steps per period. 
c rO rad ius of pipe. 
c tJt ratio of first grid size to the thickness 
c  . of stokes layer. 
c 
C output: 
c for021.dat ( x, f 13. 3, x, 4gl3. 6, 13) 
c fr,wpp amag,angd,temp, 1tr2 
c results of wall shear stress. 
c f r    f requency. 
c wpp   dimesionless frequency<wpIus/15). 
c amaqamplitude, 
c angd  phase<re 1 ative to central velocity). 
c temp  phase of central velocity(relative to the 
c pressure grad i ent). 
c itr2  numoerof iteration. 
c 
c 

program mode 
dimension u ( 300), y(300), alf a(300), bataOOO), du(33), o Id (130) 
dimension uf(160,300),a<300),b<300),c<300>,strss<ISO) 
dimension vtl(300),vt2(300),f1(300),df1(300),dy(300).fra(2) 
d imens ion v(300),f2(300),df2(300),f i1(300),f12(300),reyd(20> 
pi=4. +fatan( 1. ) '  ' 
pr i nt^ 'type in k 1 ' 
read**, k 1 
prints ' type i n bata ' 
read^,bt 
prints, 'type in re,vis,fr,ns/perod,crt' 
readit,re vis,fr,ns,crt 
print*, 'type in radius of pipe and ampl. of velocity' 
read*,rO,gama 
r = rO 
w=2, <tp i»tf r 
ymax = . 099436*re*t»t. 875 
u s = ymax/rO 
hl = sqrt(2.»*vis/w)**us/bt 
hk=l.05 
ni=aloglO(ymax#(hk-1)/hl+1)/aloglO(hk)+l 
ymax = hltf (hkHH( ni-1 )-l)/( hk-1) 
nl=hl/ymax 
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do 
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r= 
St 
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df 
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/d 
CO 
do 
f2 
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Fl 
CO 
uf 
wp 

:s 
al 

do 
tm 
tm 
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c( 
CO 
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do 
ol 
do 
do 
ip 

51 

t i a 
10 
> = h 
r0^♦ 
)=0 
50 
=-s 

i ) = 
55 
i ) = 
= 1. 
1 = 1 
2. ^ 
s/3 
max 
sqr 
I V 
SO 

Ui 
= ( 1 
. 4^ 
= vt 
2.-tt 
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II n 
1 ) = 
I ) = 
< 1 ) 
( 1 ) 
ni ) 
ni ) 
(nt 
( ni 
ao 
'V 

II n 
90 

1 cond i t ion 
i=l,ni 
Ht<hk^*it( i-1 )-l )/(hk-l) 
sqrt(w/vi s) 

1=2,ni-1 
tHy< i )/5qrt(2. 
sqrt<1./(1.-y< 
u(ni-l) 
i=2,ni 
hHthk«*« ( i-2) 
/< hk + l, ) 
, /(nk#(hk + l) ) 

I /ns 

) ) )Mexp(.tmp>Msin( tmp> 

i 

i\' 

/us 
t (w 
t(y 
=m 

xp< 

1 J 
X U 
/<2 
bbit 
= f 1 
= f2 
ue 
0 
0. 
=0. 
=0. 
= f 1 
= f2 
) = f 
)=f 
J=2 
= ( h 

/vi 

1 n2 
t2( 
,nl 

-yp 
mpl 
)«r 
)#v 
(du 
^( 

< J> 0) 

s )Hr 
,r,mini 
+ 1, ni 
ni-1) 
-1 

min2,ni,vis,vtl,vt2,f1) 

/26. > 
) 
*tmp 
i5/(xHtxl) i5/( X Htx I ) 
y+*duy)HtmpHt. 4wy<j)#r^»yp/26. 
1. -y < j) )H(u5*tvis )it^2) 
r**r/( vi sitvi s*tgama#re+t (1. -tmp) ) 

(ni-1) 
(ni-1) 
1(ni-1 ) 
1(ni-1) 
, n i -1 
kki)tfl(j + i)-hk**nkUfl(j-i) + (hk-l)Hfi(j)/hk) 

= (hkklHf2(j + l)-hk»thkl«f2(j-l) + (hk-l)i*f2(j)/hk) 

in 
t i n 
= us 
w# V 
=wp 
re^ 
ap = 
-qa 
160 
l=f 
2=d 

) = 1 
)=d 
t i n 
2=1 
171 
( i ) 
180 
190 
( k- 

ue 

nh 
= (df 
( 1. + 
ue 
^♦v i s 
i s/ ( 
/15. 
vis/ 
wp/ 1 
maMw 

dttth 
. +(t 
tithk 
ue 

i = l 
=0. 

k=l,32 
i = l, 1 

1 )*tl + i 

n 1 -1 
( i)-f2(j)/(1.-y(j) ) )/( 
1(j >-(1.+f1( i))/(1.-y( 
Fl(J))/(ST^ST) 

uf r#uf r) 

(2.nr) 
5. 
pHub/uf r 
, ni-1 
/(dy(j )Hdy(j)) 
)/(2. ♦♦dy( j) ) 
kkl«(tmpl+tmp2) 
mpi-tmp2*t(nk-i))»tdt/hk 
l«(-tmpl+hk^tmp2) 

ns 

StHSt) 
j > ) )/( StHSt ) 



400 

410 

420 
190 
180 

430 

440 

451 

450 

445 
442 

255 

'47G 

470 

ISl 
475 

do 400 
cl = d t^co 
-, SHdtH 
a Ifa< j ) 
bata(j ) 
cont i nu 
u ( n i ) = t) 
do 410 
n=ni-j 
u(n)=a 
i<k = ( k- 
do 420 
uf(kk, 
cont i n 
cont i n 

ca 1 cu la 
do 430 
5 tr ss ( i 
do 440 
d e f = 5 t r 
t f(def. 
cont i nu 
do 451 
1i = iH I 
du(1)=u 
du<33)= 
call da 
temp=an 
do 450 
1 1 = ii*ns 
du(1)=s 
du(33 ) = 
call da 
amaa=am 
a n g 5 = a n 
wr 1 te(2 
go to 4 

140 
j=2,ni-1 
5((ip-5)#dt)-a<i)^u<i + l) + (2.-b<J))i*u(j)-c(j>Hu<J-l> 
f2(j)Hkl^pc**co5<(;ip-.5)»tdt) 
=-a(j)/<b(i)+c<i)^alfa(j-l)> 
= (d-c<j)»tbata(j-l))/(b<j) + c(j)<*alfa(j-l)) 

ata<ni-l )/< 1   -alfa<ni-1 > ) i 
j=l,ni-2 

If a( n )itu< n+l ) + bata( n ) i 
UHl + i 

= 1. nl 

I 
I 

ue 
u e 
te shear stress variation at the wall from eqmod 
1=1,ns 
)=2. **uf ( i , 2)/< hlHstitst > 
i=l,ns 
ss(i )-o Id(i ) 
gt. ,00001 ) go to 445 
a 

1 = 1, 32 

f < i i, n i ) 
du( 1 ) 
tfit(du,zavg,amag,angd ) 
gd 
1=1,32 
/32 
trss( 1 i ) 
du( 1 ) '..    . H 
tfit(du2avg,amaq,angd> 
aq^5 02836* (st^rO/r >^*^t2/re^tH . 875 
Qd-tsmp 
1,255) fr,wpp,amag,angd,temp, itr2 
76 i ., 

do 
0 Id 
1 tr 
qo 
r or 
or 0 
dc 
do 
1 I = 
du c 
du ( 
ca 1 
ana 
wr 1 
wr i 
for 
con 
5 to 
end 

442 
( 1 ) 
2=1 
to 
mat 
f I 1 
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1*1 
i ) = 
33) 
i d 
d = a 
te( 
te( 
mat 
t i n 
P 

= s trs 
tr2H-l 
170 
( 1 X , f 
e of 

1 = 1, 

ns 
5( 1 

13.3, 
amo 1 i 
n i' 
32 

ix,4gl3.S,13) 
tude and phase o-f u 

u f ( i 1, j ) 
=du( 1) 
atf it(du,zavg,amag,angd) 
ngd-temp 
71, 161 )   y< j), ama< 
72, 161 ) y< J), an( 
(X,gl3.S, X, gl3. < 
ue 

) 
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(E)  Model D ■ . . 

c      this program solves turbulent pulsating flow In a pipe 
c      Dy model d ^   ^ 
c      input: re      reynolds number 
c VIS      viscosity 

fr       frequency c 
c ns       time steps per period 
c nprds    periods to be proceeded 
c bt       ratio of first grid size to the thickness 
c of stokes layer! 
c hk      factor of geometric series of grid size 
c kl       constantinmodeld 
c kl      relaxation constant in model d 
c      output.for002.dat<x, 13,4gl3.S) j,y<j),vt1(j),vt2(j),fi(J ) 
c eddy vi scos i t ies 
c for003.dat(X,2gl3.6) deg,stress 
c shear stress variaation at the wall 
c for004.dat(X,2ql3.6) deg,p(eff) 
c effective pressure gradient variation in time 
c for02i.dat(X 4ql3.6) y(j),mean,amag,angd 
c profile of mean .arnpl. and phase 
c for022.dat(x,2dl3.6) y<j),u(ii,j) 
c profile of u in 8 phases 
c for023.dat(X,2gl3.6) deg,u(ii,j) 
c u variation in time at y(j) 
c for024.dat(X 2ql3.6) y(j).b(j) (re. stress) 
c profile of reynolds stress 

program mod2 
dimension u(300 ),y<300),a If a(300).bata(300>,du(33) 
dimension uf(160,300),a(300)^b(300),c(300),str5S(ISO) 
dimension vtl( 300) , vt2(300) ,^ f 1 (300), df 1 (300), dy (300) 
d 1 men 5 ion v(300 ), f 2(300), df 2(300 ),«F i 1 (300) , f 12(300) 
p1=4.watan( 1. ) 
pr t nti*, ' type In re, v i s , f r, ns / per i od, nprds ' 
readJt, revis, fr, ns, nprds 
prints, 'type in radius of the pipe and amplitude of velocity 
readH,rO gama ' 
printi*, 'type in converge criteria' 
read^,crt 
r = rO 
%' = 2. wp iHf r 
ymax = . 099436Hreit^t . 875 
us=ymax/r 

c ... .  .    ■ ^       '   ■        -      ■ 
c s e 1 e c t   g r i d   s i 2 e 

pr 1 ntit, 'bata, hk ' 
read^t, fat, hk 
aa=26. 
ck = . 4 
h 1 = s q r t ( 2. H V i s / w ) ^t u s / b t 
ni=aIoglO(ymaxH(hk-1)/hl+l)/aloglO(hk)+l 
print**, 'ymax=',ymax, 'imax=',ni,^hl = ',hl 
ymax = hH* ( hk<«+t ( ni-l )-l ) / ( hk-l ) 
h1=h1/ymax 
prints*, 'hl=', hi, 'ymax =', ymax 

c 
c initial   cond i t ion 

do 10 i=l,ni 
10   y( i ) = hU(hk^«( i-1 )-l )/(hk-l) 

st = rH5qrt(w/vis ) 
u( I )=0 
do 50 i=2, n i-1 i, • 
tmp=-sti*y ( i )/sqrt (2. ) 

50    u(i)=-sqrt(l. /(l.-y(i)))Hexp(tmp)}*sin(tmp) u(ni )=u(ni-i) r r y 
do 55 1=2,n i 

55    dy(i)=hlHhkwH(i-2> 
hkl=l./(hk+l.) 
hkkl=l./(hkH(hk+1)) 
dt=2.Hpi/ns 
l = ns/32 .. • „ : 
r=ymax/us 
st = 5qrt(w/vi s )^r 
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c 
c 

70 

80 

90 

C 
c 

105 

100 

120 

130 
140 

145 

146 
150 

151 

ca I cu 1 
call V 
do 60 
f 1<J ) = 
do 70 
yp=y(j 
tmpl=e 
tmp=( 1 
X l = ckJt 
duy = v t 
bb=2.^ 
tmp = bt3 
f2( i)= 
fil( j) 
fi2(j) 
cont 1 n 
f 1( 1 ) = 
f2< 1 ) = 
f il< 1 ) 
f i2( 1 > 
f Kni ) 
f2(ni > 
f i 1 (ni 
f i2(nl 
do 30 
df 1< 
/dy( 
df2< 
/dy ( 
cont i 
do 90 
f2< i>= 
df 1( j) 
f 1<j) = 
con11 n 
uf r0= 
wp=wwV 
u D = ro-i* 
a Ifap = 

ca1cu 1 
prints 
readH, 
pc=-ga 
a If ap= 
pk=(kl 
vk=(al 
v(1>=0 
i tr=i 
cont i n 
do 100 
i i = (it 
v(i)=p 
v(1)=v 
do 120 
d 1 ta = a 
if(dlt 
cont i n 
go to 
do 140 
0F2( I ) 
i tr=l + 
go to 
do 146 
i i = i^ 1 
deq=i*t 
du( i ) = 
wri te( 
f ormat 
du(33) 
call d 
wri te< 
format 
pri nt»» 

ate u 
t(y,Li 
.j=mi n 
2^vt2 
j=2, n 

Kp<-y 
. -tmp 
y< j)^ 

X lit(d 
/(2. *♦ 
bt)M2. 
= f 1( j 
= f2(j 
ue 
0. 
0. 
=0. 
=0. 
=:f 1< n 
= f2( n 
)=f 1( 
) = f 2( 
j=2 n 
= (hkk 

at 

5' ■" 
2+1 
(ni 
i-1 
r 
p/a 
1) 
r« t 
V i 5 

?r 
) 
) 

vtl,vt2,f1,aa,ck) 
new t ime leve 1 
,mInl,min2,n i,vis, 

a) 

mp 
/ ( X U X I ) 
duy)^ttmpHtck**y<j )nrnyp/aa 
-y < J ) )J» (us^vis )<t#2) 
r/(vi5*fvis»*gama<tre^(l.-tmp>) 

i-1) 
i-l> 
n i -1) 
ni-1)   . 
i-1 
l»tfl(j + l)-hk#hkHtfl(j-l) + <hk-l>i»fl<j)/hk> ): 

) 
) = (hkkl^♦f2<j + l)-hk)thkH♦f2<j-l> + <hk-l)^♦f2(J)/hk) 
) 
nt 

) )/(StKSt > 
. -y( J ) ) )/(stit5t) 

ue 
i=2,ni-1 
(df 2( j)-f2( j)/( 1. -yCj ) 
= ( d f 1 ( j > - ( 1. -tf 1 ( j )) / ( 1 
( 1. +f 1( j ) )/ ( ft^st) 
ue 
099436Hre^t**. 875^vis/r 
1 5/ ( uf rOi*uf rO) 
V i 5 / ( 2. H r ) 
wp/15. 

ate   effective   pressure   gradient 

kl':^' '" "''^' 
ma^wp#ub/uf rO 
2Ha If ap#k 1 
♦♦dt) /( alf ap+dt > 
fap-dt)/(alfap+dt) 

ue 
i=2. 

r-1 )*♦ 
kitpc^t 
(ns + 1 

b5( v( 
a. gt. 
ue 
145 

i = l, 
= V( I ) 
itr 
105 

i = l. 

ns + 1 
ns+i-1 
(cos(iiHdt) + cos((ii-l)itdt))+vk>*v(i-l) 
) 
ns 
i)-df2(i)) 
crt) go to 130 

ns 

32 

11. 25 
v( i i ) 
4, 150) 
(X,2gl3. 
=du( I ) 
atf i t(du 

deg 
. 6) 

du( i ) 

(/ X,'mean= 
tr=', itr 

zavg,amag 
ai 

gi3. 6, 
4,151) zavg,amag,angd 

angd ) 

'ampl=', gl3. 6, X, 'phas=', gl3. 6) 
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do 

160 

400 

410 

420 
190 
180 
170 

430 

450 

460 

C 
C 

451 

470 

161 
475 
C 

186 

197 

160- 1=2, 
tmpl=f1( . = f lU 

:=df 1 ( 
)) 

ni-1 
)y (dy( j )»*dy( i 

tmp2=df 1 ( i )/(2. »*ay( j > ) 
a(j)=-dt«nkklit(trnpl + tmp2) 
b(j>=l.+(tmpl-tmp2*(hk-l))Hdt/hk 
c(J)=dt*hkH* (-tmpl + hk#tmp2) 
continue 
do 170 m=l,nprds 
do 180 k=l,32 
do 190 i = i, 1 
1 p=( k-1 )ii 1 + i 
do 400 j=2,ni-i 
d = dt^cos((ip-.5)wdt)-a<j)#u(j + l) + (2.-b(j))^tu<j)-c(j)itu(j-l) 
-5^dt*f2(j)H(v(ip)+v(ip+l)) 
alf a( J )=-a( j )/<b(j)+c<i)italfa(i-l)) 
Data<j> = <d-c(j)**bata<j-l))/(b(j) + c(j)i*alfa(j-l)) 
continue 
u<ni)=bata<ni-1)/(1.-alfa(ni-1 ) ) 
do 410 j=l,ni-2 
n=ni-j 
u(n)=alfa(n)^tu(n + l)+bata(n) 
if(m.ne.nprds)qotol90 ' 
kk=( k-1 )*♦ l + l 
do 
uf ( kk 
cont i hue 
continue 
continue 

calculate shear 
do 430 1=1,NS 
strss(i)=2.»*uf(i,2)/(hlHstHst) 
do 450 1=1,32 
II=I#L 
du(l)=str5S<ii) 
du(33)=du(1) 
do 460 i=l,32 
deq=i«l 1. 25- 
wn te(3, 150) deg, du( i ) 
call datfit(du,zavg,amag,angd ) 
angd=90.+angd 
write<3,151) zavq,amag,angd 
amag = amag#5. 0233b^< stHrO/r)^t^2/re#H 
pr I n t»*, ' c ( 0 >= ', amag 

420 1=1,ni 

stress variation at the wall from inod2 

875 

prof tie of 
do 451 1=1 
1i = iH I 
du(i)=uf(i 
du(33)=du< 
call datf i 
temD=angd 
do 475 1=2, 
do 470 1=1, 
i i = ij* 1 
du(i)=uf(i i 
continue 
du(33)=du< 1 ) 
call datf 11(du 
angd=angd-temp 
write(2I, 161 ) 
f ormat(x,4g13. 
cont i nue 

amp 11 tude 
32 

and phase of u 

i ) 

t(du 

n i 
32 

J> 

zavg,amag,angd ) 

zavg,amag,angd ) 

[< j ), zavg, amag, angd 

prints*, 'do you want u profile in 8 phases ? 0 yes. l.no' 
read*^, ncr 
i f(ncr. ne.0) go to 501 
printH, 'enter y/r (the y where the profile ends)' 
read+t, ys 

1 f(y(J).gt.ys) go to 187 
j = j + l 
go to 186 
nk=j-l 
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c 

do 500 1=1,8 
i i=:i<*ns /S 
do 511 j=l^nk 
wri te<22, 150) y(j ),uf(i i,J) 

511   continue 
500 continue 
501 continue 

c 
print«, 'do you want time variation of u at y(J) ? 0 yes , 1 no' 
read)*, nt 1 
If(ntl. ne 0) go to 123 

121   pr i nt^*, 'wni en y/r ? type in j' 
read*,j 
do 131 i=l,32 j 
ii=i^l 
deg = i)*l 1. 25 

131   write(23,150) deg,uf(il,i) 
print)*, 'go on ? o yes , I no' 
read**, ntst 
i f(ntst.eq.0) go to 121 

123   cont i nue 

print)*,'do you want reynolds stress profile at 8 phases ?' 
pri ntn,  '0 yes, 1 no ' 
read)* nt2 
i f(ntz.ne.0) go to 521 
do 520 1=1,8 
i i = H*ns/8 
do 530 j=2,nk 
a(j) = (uMii,j + i)jtnkki-hk)*hkl)*uf(ii,j-l) + (hk-l)Huf(ii,J)/hk) 

2 /dy(J) 
530  b( j )=-(f i 1( j )Ha( j )-f i2( j ))*v( i i ) ))*gama/re 

b<l)=0. 
do 525 j=l^nk 

525   wr i te<24, 150) y(j),bU) 
520 continue 
521 continue . 

stop 
end 

(F)  Subroutines 

subroutine tri(m, n,hl,hk,y,r,st,dt.alfa,^bata, l,u) 
dimension u(200 ),a I fa(200),bata(200), y(200) 
nki=i/(hk+l) 
nkk 1 = 1. / ( hk)* ( hk + l ) ) 
do 300 j=m, n "" • 
dv = ni)*nrc>*)+ (j-2) 
stdy = dt/< 5 t>*5 tHdyHdy ) 
s tdyym=d t/(2. »*5tH5tJ*dy)*< 1-y ( j ) ) ) 
a=(-s tdy + s tdyym))*nkkl 
b = l. +(stdy+stdyym)*(hk-l))/hk 
c=(-5tdy-5tdyym)*hk))*hkl 
d = dt>*co5((i-l+0.5))*dt)-a)*u(j + l) + (2.-b))*u(J)-cHu(J-l) 
a If a< J )=-a/( b + c)*alf a( j-1) ) 
bata( J ) = (d-c>*bata( j-1) )/(b+c)*alf a( j-1) ) 

300   cont i nue 
return 
end 



132 

133 

134 

c 
c 

210 

2 
i 

■>=;n 

7 
6 
5 

i ne 
on V 
0000 
0000 
J = 2, 
HUSH 
pf-y 
. 5»* ( 

■ '^'* y 

r)f y ( 
s^vt 
X l«x 
. 20) 
2. ^v 
j=20 
s( vt 
s< f i 

e?! 

vt(y.us, r, minl,min2, ni, vis, vtl, 
tl(260),vt2(206),f i(206),y(200^ 

i-1 

/2S. ) 
1 -i-sq 
) )H( 1 

*♦ tmp2 
♦♦( 1. - 
)w tmp 
( j )/( 
Udmv 
0 to 
1( j) + 
ni-l 

1 
( 
defml) 

( j )-v 
j)-2M 

qe.defm2) 
ef2 

vt2(ni-l)) 
go to 133 

go to 134 

subrout 
d imensI 
defml=l 
defm2=l 
do 132 
vp = y<j ) 
lmpl=ex 
vtl(j)= 
tmp2=(2 
vt5( i)= 
X 1= 4Hr 
X 1 1 =. 2H 
dmvy = v t 
tmp=2.H 
If<j. gt 
f i(J) = ( 
do 134 
def l=ab 
def2=aD 
1 f < def1 
defml=d 
mi nl = j 
if(def2 
defm2=d 
mi n2=j 
cont i nu 
return 
end 

siioroutine datfit<2 zav 
dimension a(2,2),b(2>,z 
np = 33 
pi =4  <*atan(l.) 
n = 2 
do   210   1=1,33 
X( i ) = 1H   03l25H2«pi 
do   1    1 = 1, n 
do   2   j=l,n 
a ( i, J)=0. 
b ( I)=0 
5ijmavq = 0. 
do   250   1=1,32 
9umavg=5umavg+z<I) 
z a V q = s u m a'V g / i n p - 1 ) 
do 5 m=l,np 
1 1=0 
do 6 j .i = 1 . n 

vt2,f i) 145 

rt ( 1. +. 64^yp^^2it( l.-tmpl)»f*»2«<l.-y(j))>) 
+ 2. ^♦( 1. -y( j ) )MH2) 

/6. 
tmpl ) 
Htyp/<26.it<l. -y<j) )**(us*tvis)itH2) 
X iwx 1 ) 
yH*t2   ' 
132 
tmp)/<l-tmp) 

t2(j > ) 

a,amaq,angd > 
lfi3), x(33) 

do 6 Ji: 
11 = 11+1 
<JJ> = 
( JJ + 1 
im=o 

b<jj)=b<jj> + <z<'n)-zavg)^sin<x(m)itii) 
"'■')=b(jj+l)+<z(m)-zavg)^co5(x(m)#ii) 

n,2 

b 
mm 
do 7 kk=l 
mm=mm+1 
a(J4, kk)=a(j i 
a(jj,kk+l)=a( 
a(jj+1 
a( jj + 1. 
continue 

, k k ) + s i n ( X ( m ) H i i ) ^t 5 i 
J j , k k +1 ) + s i n < X ( m ) ♦♦ i i 

n( X(m)Mmm) 
)itcos ( X ( m )Hmm> 

x<m)Hii)i*sin(x(m)#mm) 
JJ 
mt 

continue 
continue 

kk )=a < Jj + l,kk)+C05 < 
=aTjj+l,kk+l)+co5<x(m)Hii)*cos(x(m)#mm> kk + l ) 

delt=a(1,1)*a<2^2>-a(l,2)Ha(2, 
deltl = b(nHa<2,2)-b(2)^a(l,2) 
delt2=b(2)Ha<l,l)-b(l)#a(2,1) 
b(1)=deltl/de it 
b<2)=delt2/delt 
amag = 5qrt(b( l)«^2+b(2)>t<t2) 
bb = -b<1 ) 
bbb=b<2) 
ang = atan2(bb,bbb ) 
angd = ang^*360. / (2. itp i ) 
return 
end 

1) 
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APPENDIX III.  Sampling Programs in LSI-11 

(A)  Sampling program for steady flow. 

C PROGRAM MCRTS_ 
C THIS IS THE FORTRAN CONTROLLER PROGRAM 
C FOR ANALOG TO DIGITAL CONVERSION OF 
C MULTIPLE CHANNELS AT SPEEDS UP TO    ' 
C 20000 CHANNELS PER SECOND.THIS 
C PROGRAM SETS THE OUTPUT FILE,THE ERROR 
e FLAGS,THE DATA ARRAY AND CALLS THE       '"' 
C MACRO SUBROUTINE MCRTSB.MAC WHICH 
C STARTS THE CLOCK, AND COLLECTS THE DATA. 
C 
C THE OUTPUT FILE IS SPECIFIED USING THE 
C GETSTR COMMAND, THIS MUST BE COMPILED 
C USING THE NOSWAP OPTION. 
C 
G THE OUTPUT FILE IS FORMATTED 15,15 
C WITH THE FIRST A DATA POINT NUMBER 
C AND THE SECOND, THE VALUE OF THE DATA 
G POINT IN 2'S COMPLEMENT. 
C A SEPARATE PROGRAM IS NECESSARY TO 
G CONVERT THESE NUMBERS TO VOLTAGES. 
C THIS SAVES MEMORY SPACE IN THE 
C COLLECTION PROGRAM FOR THE LARGEST 
C NUMBER OF DATA POINTS. 
C 
C THE NUMBER OF CHANNELS AND THE NUMBER 
C OF DATA POINTS ARE READ FROM THE 
C TERMINAL AND ARE TRANSFERED TO THE 
C SUBROUTINE. 
C 
C THE CLOCK SPEED,THE DATA AQUISITION RATE, 
C IS SET BY SELECTING THE MULTIPLE 
C OF lOOOO/SEC DESIRED. 
C I.E. HATE- MULTIPLE/IOOOO 
C MULTIPLE MUST BE A POSITIVE INTEGER 
C AND IF FINER INTERVAL SPLITTING IS NEEDED 
C THE MACRO PROGRAM CAN BE EDITED TO 
C ALLOW DIVSIONS OF 10**5 OR 10**6/SEC. 
C 
C« «*«**««* ««««*««*«*«*««*««*t««««««*««iit*««««««t««««*««« 

c 
c 

PROGRAM MCRTS 
C 

INTEGER*: DATA(12000) i 
DATA      DATA/120 00*0/ 
L0GICAL«1  DATFIL(12),ERR 
COMMON  /AD/ DONE,ERCLX,ERADC     !DONE FLAG,ERROR FLAGS 

r 

DONEr^O 
ERCLX=0 
ERADC=0 

u 
1 
10 

C 

WRITE(7 
FORMATdX, 

10) 
'TYPE IN THE NAME OF THE OUTPUT FILE' ) 

CALL GETSTR(5,DATFIL,11,ERR) 
IF(ERR) GO TO I 

C 
0PEN(UNIT:=3,NAME = DATFIL,TYPE='NEW' )   IWRITINGWITH 

G IDEVICE 3 WILL 
C !NOW GO INTO OUTPUT FILE 
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C 
G 

20 

30 

C 

C 

c 
c 

40 

»9 

SO 

if 

60 

79 
70 

C 
C 30 
100 
c 

WRITE(7,20) 
FOHMATdX, 'TYPE IN THE NUMBER OF CHANNELS 
AND THE NUMBER OF POINTS PER CHANNEL') 
READ(5,«) NCHS,NPTS 

WRITE(7,30) 
FORMATdX, -TYPE IN THE MULTIPLE OF 10000/SEC 
FOR THE SAMPLING RATE') 

READ(5,«) MULT 

WRITE(7,40) 

FORMATdX, -DATA AQUISITION IN PROGRESS') 

CALL MCRTSB < NPTS,NCHS,MULT,DATA) 

IF (DONE.EQ.0) GO TO 9 9 

IF (ERCLK.LT.1) GO TO 89 
WRITE<7,50) 
FORMAT(IX,'CLOCK OVERFLOW ERROR') 

IF (ERADC.LT.I) GO TO 7 9 
WRITE(7,60) 
FORMATdX, 'A/D CONVERTER ERROR') 

WRITE(7,70) 
FORMATdX, 'DATA COLLECTION COMPLETE') 

DO 100 1 = 1 ,NPTS«NCHS 
WRITE(3,*> DATA(I) 
WRITE<3,80)1,DATA(I) 
FORMAT(15,15) 

CONTINUE 

STOP 
END 

SUBROUTINE MCRTSB.MAC 

THIS SUBROUTINE IS CALLED FROM MCRT3 FOR 
CALL MCRTSB<NPTS,NCHS,MULT,DATA) 

WHERE:      NPTS= NUMBER OF DATA POINTS PER CHANNEL 
NCHS= NUMBER OF CHANNELS 
MULT=: MULTIPLE OF lOOQO/SEC 
DATA= DATA ARRAY 

S^^JSTER 4 IG USED TO POINT TO THE DATA ARRAY 
REGISTER 5 IS THE POINTER FOR THE ARGUMENTS IN 

THE FORTRAN CALL 
THE OTHER REGISTERS ARE NOT USED 

.SBTTL MCRTSB.MAC 

.GLOBL MCRTSB 

.GLOBL COLOOP 

***ttt»in 

AD3TAT=17 7000 
ADBUF=ADSTAT+2 

CLSTAT=170420 
CLBUF=CLSTAT+2 

CLVEC.= 440 
PR7=340 

;THE ADDRESS OF THE A/D BOARD 
iTHE ADDRESS OF THE DATA REGIST! :H 

;THE ADDRESS OF THE CLOCK 
;THE ADDRESS OF THE CLOCK COUNTER 

;THE CLOCK INTERUPT VECTOR 
;INTERUPT PRIORITY IS 7 
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DONE: 
ERCLK: 
ERADC: 

DATA 
NCH5 
NPTS 
MULT 

MCRTSB 

DEVPRI=5 
■PSECT AD,HW,D,GBL,REL,OVR 
WORD 0 
.WORD 0 

jDEVICE PRIORITY IS 5 

WORD Q ;SET UP FLAGS IN /AD/ COMMON 

.PSECT fDATA RW,D,LCL,REL,CON 

.WORD 0 

.WORD 0 

.WORD 0 

.WORD 0 

.PSECT $CODE RW,I,LCL,REL,CON 

.MCALL .INTEN ;LOWERS PRIORITY ON INTERUPT 

MOV 9<R5)+,R0 
MOV 8(R5)+,NPTS 
HOV e(R5)+,NCHS 
MOV e(H5)t,MULT 
MOV  (R5)+,DATA 

MOV tC0L00P,9#CLVEC 
MOV #PR7,eitCLVEC + 2 
CLR 9tAD5TAT 
TST 9«ADBUr 

CLR 9«CLSTAT 
NEC MULT 
MOV MULT,e#CLBUF 
MOV »133,9#CLSTAT 

;IGNORE NUMDER OF ARGUMENTS 
;GET NUMDER OF POINTS 
;GET NUMBER OF CHANNELS 
;GET MULTIPLE FOR CLOCK 
;GET ADDRESS OF DATA ARRAY 

;LOAD INTERUPT LOCATION 
;AND PRIORITY 

INITIALIZE CLOCK 
CHANGE MULT TO 2■S COMPLEMENT 
MOV MULT INTO CLOCK COUNTER 
START CLOCK 10000/S2C 
INTERUPT ENABLED 

RTS PC ;RETURN TO MAIN PROGRAM TO 

;WAIT FOR INTERUPT 

COLOOP: .INTEN DEVPRI 
SIC »200,8«CLSTAT 
MOV NCHS,R5 

MOV DATA,R4 
MOV #1 ,9tADSTAT 

U: TSTD 9«ADSTAT 
DPL It 
MOV 9»ADBUF,(R4)+ 
DEC NCHS 
BEQ 3; 

22 «: ADD #4 01,9#ADSTAT 
2S: TSTB eiADSTAT 

BPL 2f 
MOV 9#ADBUr, (R<l) + 
DEC NCHS 
BNE 22? 

35: DEC NPTS 
BEQ EXIT 
MOV R4,DATA 
MOV R5,NCHS 

< 
RTS PC 

EXIT: CLRB 9#CLSTAT 
BIT #10000,etCLSTAT 
BEQ lot 
MOV #2,ERCLK 

10?: TST 9#ADSTAT 
BPL RETURN 
MOV #2,ERADC 

RETURN: MOV #1,D0NE 
RTS PC 
.END 

iLOWER DEVICE PRIORITY 
,CLEAR CLOCK OVERFLOW BIT 
;SAVE NUMBER OF CHANNELS 

;M0VE DATA ADDRESS TO R4 
,LOAD CHANNEL 0 AND START CONVERSION 
;WAIT UNTIL COMPLETE 

;SAVE DATA POINT 

;SET SEQUENTIAL MODE 
;TEST IF DONE 

;SAVE NEXT DATA POINT 
;DECREMENT NCHS 
;ANY MORE CHANNELS 

;N0 DECREMENT POINTS 
;EXIT IF DONE 
;SAVE DATA 
;SAVE CHANNEL COUNT 
;RETURN FOR MORE DATA 

STOP CLOCK 
CHECK CLOCK ERROR BIT 
NO SET CONTINUE 
SET CLOCK ERROR 
AD ERROR BIT SET ? 
NO RETURN 
SET A/D ERROR 
SET DONE 
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(B)  Sampling program for time interval between two trigger signals. 

C       PROGRAM TTMF.FOR 

C THIS IS A FORTRAN DRIVER FOR MEASURING MEAN TIME 
C INTERVAL BETWEEN TWO EXTERNAL TRIGGER SIGNALS. 
C NETS     NUMBER OF PERIODS TO BE MEASURED. 
C NN      NUMBER OF POINTS TO BE USED IN DATCL.FOR 
C FOR A PERIOD. 
C MULT     SAMPLINIG RATE TO BE USED IN DATCL.FOR. 
C BEFORE RUN THIS PROGRAM,LINK IT WITH TTM.MAC. 

PROGRAM TTMF 
INTEGER*: DATA(500) 
DATA DATA/50 0*0/ 
LOGICAL*! DATFILdZ) ,ERR 
COMMON /AD/DONE,ERCLK 

C 
DONE=0 
ERCLX=0 

C 
1     WRITE(7,10) 
10    FORMATdX,'TYPE IN THE NAME OF THE OUTPUT FILE') 

C 
CALL GETSTR<5,DATFIL,n,ERR) 
IF(ERR) GO TO 1 
0PEN(UNIT=3,NAME=DATFIL,TYPE='NEW') 

C 
WRITE(7,20) 

20    FORMAT(IX,'TYPE THE NUMBER OF PERIODS AND POINTS PER PERIOD') 
READ<3,*) NFTS.NN 
WRITE(7,30) 

30    FORMAT(IX,'PERIOD MEASUREMENT IN PROGRESS') 
CALL TTM(DATA,NPTS) 

9 9   IF(DONE.EG.0) GO TO 9 9 
IF(ERCKL.LT.1) GO TO 89 
WRITE(7,40) 

40    FORMAT(IX,'CLOCK OVERFLOW ERROR') 
3 9    WRITE(7, SO) 
50    FORMAT(IX,'PERIOD MEASUREMERNT IS OVER') 

SUM = 0 
DO 10 0 1=1,NETS 

100   SUM=SUM+DATA(I) 
COUNT=SUM/NPTS 
MULT=COUNT/NN 
STDV=0 
DO   2 00   U1,NPTS 

200        STDV=STDV+(DATA(I)-C0UNT)*«2 
STDV=SQRT(STDV/NPTS)/COUNT 
WRITE(3,*) COUNT,STDV,MULT 

C  110   F0RMAT(IX, 'COUNT=' ,16, 'STDV=' ,F3 .4 ) 
STOP 
END 

; SUBROUTINE TTM.MAC 
; THIS SUBROUTINE IS CALLED FROM TTMF.FOR. 
; CALL TTM(DATA,NPTS) 

WHERE  DATA=DATA ARRAY. 
NPTS=PERIODS TO BE AVERAGED 

.SBTTL TTM.MAC 

.GLOBL TTM 

CLSTAT=170420 ;THE ADDRESS OF THE CLOCK 
CLBUF=CLSTAT+2 ;THE ADDRESS OF THE CLOCK COUNTER 
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DONE; 
ERCLK: 

CLVEC=444 
?R7=340 

DEVPRI=5 

;THE CLOCK INTERRUPT VECTOR 
;INTERRUPT PRIORITY IS 7 

.PSECT AD,RW,D,GDL,REL,OVR 

.WORD 0 
WORD 0 

,DEVICE PRIORITY IS 5 

DATA 
NPTS 
FLAG 

.PSECT SDATA RW,D,LCL,REL,CON 
WORD 0 
.WORD 0 
.WORD 0 

.PSECT SCODE RW,I,LCL,REL,CON 

.MCALL .INTEN 

TTM: MOV 9(R5)+,R0 
MOV (R5)+,DATA 
MOV 9(R5)+,NPTS 
MOV #0,FLAG 
MOV «CLKISR,9iCLVEC 
MOV IPR7,9«CLVEC+2 

IGNORE NUMBER OF ARGUMENT 
GET ADDRESS OF DATA 
GET NUMBER OF POINTS 
SET FLAG ZERO 
LOAD INTERRUPT LOCATION 
AND PRIORITY 

CLR etCLSTAT 
MOV •60034,9#CLSTAT 

RTS PC 

CLKISR: .INTEN DEVPRI 
TST FLAG 
BNE 1? 
MOV »l,rLAG 
BIG ilOOOOO,9#CLSTAT 
RTS PC 

1$ : MOV DATA.RO 
MOV e#CLBUF,(RO)* 
MOV RCDATA 
BIG #100000,8#CLSTAT 
DEC NPTS 
BEQ EXIT 
RTS PC 

EXIT: BIG #20000,9#CLSTAT 
BIC #1,9#CLSTAT 
BIT #10000,8#CLSTAT 
BEG RETURN 
MOV #2,ERCLK 

RETURN: MOV •1,DONE 
RTS PC 
.END 

;INITIALIZE CLOCK 
;SET CLOCK,ST2 CO ENABLE, 

INTERRUPT ON ST2,lOKHZ,MODE 3 
;RETURN TO MAIN PROGRAM TO WAIT 
FOR INTERRUPT 

LOWER DEVICE PRIORITY 
,TEST FLAG 
IGNORE FIRST ST2 EVENT 

;SET FLAG ONE 
; CLEAR ST2 FLAG 
;RETURN TO MAIN PROGRAM TO WAIT 
FOR NEXT ST2 EVENT 

;SEND COUNTS TO DATA ARRAY 

CLEAR ST2 FLAG 
DECREMENT NUMBER OF POINTS 
NO MORE POINT,GO TO EXIT 
MORE POINTS,RETURN TO MAIN PROGRAM 
TO WAIT FOR NEXT ST2 EVENT 

; UNABLE ST2 GO BIT 
STOP CLOCK 
CHECK CLOCK ERROR BIT 
iNO ERROR,GO TO RETURN 

;ERROR,SET ERCLK 2 

;SET DONE 1,FINISH SAMPLING 
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(C)  Sampling program for oscillating flow. 

C PROGRAM DATCL 
C THIS IS A FORTRAN DRIVER FOR COLLECTING DATA AND 
d WRITTING THEM DIRECTLY TO A DISX. THIS PROGRAM 
C STARTS TO TAKING DATA WHEN AN OUTER TRIGGER SIGNAL 
C OCCURS,THEN SWEEPS ALL CHANNELS AT EACH SAMPLING 
C POINT UNTIL THE REQUIRED PERIODS ARE REACHED. 
C DATX ACQUISITION RATE IS 2000 POINTS/SEC FOR MULTIPLE 
C CHANNELS. 
C NCHS      NUMBER OF CHANNELS 
C NPTS      NUMBER OF POINTS PER CHANNEL PER PERIOD 
C NPRDS     NUMBER OF PERIODS 
C DIMENSION OF IX     NCHS'NPTS 
C BEFORE RUN THIS PROGRAM, LINK IT WITH DATCLT.MAC 
C 

PROGRAM DATCL 
INTEGER IX(192) 
LOGICAL*!  DATriL(12),ERH 

C 
1 WRITE(7,10) 
10        FORMATdX, 'TYPE IN THE NAME OF THE OUTPUT FILE') 

C 
CALL GETSTR(5,DATFIL,11,ERR) 
IF(ERR) GO TO 1 

C 
G 
C OPEN THE DATA FILE, USE DEVICE 3 TO WRITE 
C 

c 
C 

c 

c 

c 

OPEN(UNITES,NAME=DATFIL,TYPE='NEW ,ERR=l 
Z     ,FORM='UNFORMATTED' .RECORDS IZE = 50) 

wniTE<7,20) 
20        FORMATdX, 'TYPE IN THE NUMBER OF CHANNELS 

Z     AND THE NUMBER OF POINTS PER CHANNEL AND NUMBER OF PERIODS') 
READ(5,«) NCHS,NPTS,NPRDS 

WRITE(7,30) 
30        FORMATdX, 'TYPE IN THE MULTIPLE OF 10000/SEC 

Z     FOR THE SAMPLING RATE') 

READ(5,«) MULT 

WRITE(7,40) 
40        FORMATdX, 'DATA AQUISITION IN PROGRESS') 

CALL DATCLTCNPTS,NCHS,MULT,32 76 7) 
C 
C THIS SECTION GETS DATA AND WRITES IT TO DISK 

DO 120 K=l,NPRDS 
DO 130 1=1,NPTS«NCHS 

130       CALL GETVdXd )) 
120       WRITE<3) IX 

C 
CALL CLEAN 
CL0SE(UNIT=3) 

79        WRITE<7,70) 
70        FORMATdX, 'DATA COLLECTION COMPLETE') 

STOP 
END 
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«*«**«««««»««*«««««««»*»««*««««««»«««««««**«»««»««««♦«»» 

SUBROUTINE DATCLT.MAC 
THIS SUBROUTINE IS CALLED FROM DATCL.FOR. 
CALL DATCLT(NPTS,NCHS,MULT,32767) 

t**««t*ttii*ttiiiitii«it*iit*t*itt*iittiii(t*ntttniitii**iiii*iiitiitit*tiit 

.SBTTL DATCLT.MAC 

.GLOBL DATCLT 

.GLOBL COLOOF 

.GLOBL CETV 

.GLOBL CLEAN 

ADSTAT=17 7000 
ADBUF=ADSTAT+2 
CLSTAT=170420 
CLBUF=CLSTAT+2 
STVEC=444 
CLVEC=440 
PR7=340 

;THE ADDRESS OF THE A/D BOARD 
;THE ADDRESS OF THE DATA REGISTER 
;THE ADDRESS OF THE CLOCK 

;ST2 INTERRUPT VECTOR 
;THE CLOCK INTERRUPT VECTOR 
;INTERRUPT PRIORITY IS 7 

.PSECT «DATA RW,D LCL,REL,CON 
BUFSIZ = 327(i7 

NCHS: .WORD 0 
NPTS: .WORD 0 yC 

MULT: WORD 0 
LIMIT:: .WORD 0 
TEMP: .BLKW I 
INPTR:: .WORD BUF 
OUTPTR:: .WORD BUF 
COUNT:: .WORD 0 
BUF: : .BLKW BUFSI Z 

DATCLT:    MOV 9<R5)+,R0 
MOV 9(R5)+,N?TS 
MOV 9(R5)+,NCHS 
MOV »(R5)+,MULT 
MOV 9(R5)+,LIMIT 

IGNORE NUMBER OF ARGUMENTS 
GET NUMBER OF POINTS 
GET NUMBER OF CHANNELS 
GET MULTIPLE FOR CLOCK 

MOV #C0L00P,9#STVEC 
MOV »PR7,9«STVECf2 
MOV tC0L00P,9»CLVEC 
MOV iPR7,e#CLVEC+2 

LOAD ST2 INTERRUPT LOCATION 
AND PRIORITY 
LOAD INTERUPT LOCATION 
AND PRIORITY 

1$: 

CLR 9#ADSTAT 
MOV #0,R1 
SOB Rl,15 

CLR 9»CL3TAT 
MOV »BUF,INPTR 
MOV #BUF,OUTPTR 
NEC MULT 
MOV MULT,e#CLBUF 
MOV NPTS,TEMP 
MOV #60132,9#CLSTAT 

TST e«ADBur 

;INITIALIZE CLOCK 

;CHANGE MULT TO 2'3 COMPLEMENT 
;MOV MULT INTO CLOCK COUNTER 

;ST2 START CLOCK 10000/SEC,REPEATED MODE 
;INTERUPT ENABLED 

RTS PC ;RETURN TO MAIN PROGRAM TO 
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COLOOP 

1$ 

2S 

3$ 

EXIT: 

PUTV:: 

15 : 
25 : 

GETV: 

15 : 
CLEAN: 

MOV #0,9#ADSTAT 
BIC »200,e«CLSTAT 
MOV RO,-(SP) 
MOV R4,-(SP) 
MOV NCHS,R4 
TSTB   9#ADSTAT 
BPL 15 
MOV 9»ADBUF,R0 
DEC Rl 
BEQ 35 
BI2 #40000,itADSTAT 
JSR PCPUTW 
TSTB   8#ADSTAT 
SPL 25 
MOV 9*ADBUF,R0 
INCB   9«ADSTAT 
JSR PCPUTW 

DEC R4 
BNE 25 
DEC TEMP 
BEQ EXIT 
MOV (SP)+,R4 
MOV <SP)+,R0 
RTI 
MOV (SP)+,R4 
MOV (5P)+,R0 
MOV NPTS.TEMP 
MOV #60132,etCLSTAT 
RTI 

;WAIT FOR INTERUPT 
;LOAD CHANNEL 0 AND START CONVERSION 

SAVE RO 
SAVE R4 
SAVE NUMBERS OF CHANNELS 
WAIT UNTIL COMPLETE 

;SAVE DATA POINT 

;SET SEQUENTIAL MODE 
;SAVE DATA IN BUFFER 
;TEST IF DONE 

;SAVE NEXT DATA POINT 
;LOAD NEXT CHANNEL 

;SAVE DATA IN BUFFER 

;DECREMENT NCHS 
;ANY MORE CHANNELS 

;N0 DECREMENT POINTS 
;EXIT IF DONE 

;RETURN FROM INTERRUPT 

;NO,BACK FOR ANOTHER 3T2 EVENT; 

.PSECT PUTW 
CMP COUNT,LIMIT 
BC£ 2$ 
MOV R0,9INPTR 
INC COUNT 
ADD #2,INPTH 
CMP INPTR,»BUF+<BUFSIZ«2> 
SLO 15 
MOV #BUF,INPTR 
RTS PC 
BIC #100,9#CLSTAT 
RTS PC 

THIS SECTION IS CALLED FROM FORTRAN PROGRAM AND MOVES DATA FROM 
BUFFER TO THE RETURN CALL STATEMENT. THE FORTRAN PROGRAM THEN WRITES 
DATA POINTS TO DISK 
.PSECT GETW 
CMP t100 0,COUNT 
BGE GETV 
MOV 90UTPTR,92(R5) 
DEC COUNT 
ADD #2,0UTPTR 
CMP   0UTPTR,«BUF+<BUFSIZE«2> 
BLO   15 
MOV «BUF,OUTPTR 
RTS PC 
CLR COUNT 
CLR 9#CLSTAT 
CLRB 9#ADSTAT 
RTS PC 
.2ND 
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APPENDIX IV.  Pulsating Pump Curve 

A schematic drawing of a pulsating pum is shown in Figure IV.1. 

Point 0 represents the shaft of the motor.  Point C, the position of 

the piston, is moving along axis oc.  Term L is the stroke length and 

L is the length of the arm which connects the piston in one end and 
3. 

the storke in the another end. 

At any moment, the position of the piston C is expressed as 

X = L cos 0) 
s 

t+ A'       ^2  . 2 L - L sin cot 
a   s (IV.1) 

where u is angular frequency.  The velocity of the piston is then 

u = 
dx 
dt 

L 0) sin (jjt 
s 

cos (jjt 

-'-IT 
a 

•^ 1 - L 
. 2 ^ 
sm cot 

(IV.2) 

Therefore, the pressure gradient can be expressed as r— = -r^ and 
p dx  dt 

plotted in Figure IV.2 for L =7.62 cm, L = 55.25 cm and f = 0.325 Hz. 
s        'a 

The least square fit of a cosine curve is also plotted in dashed line.  It 

L g 
is seen that when -— is not negligible the movement of the piston starts to 

deviate from a sinusoidal variation. 
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Figure IV.1 Schematic of pulsating pump 

360 

Figure IV.2 Pressure gradient calculated from the 
movement of the piston 

(L = 7.62 cm, L = 55.25 cm and f = 0.325 Hz) 
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S3mibol 

a 

■#- 

B 

C 

D 

D m 
f 

F 

H 

I 

K 

NOMENCLATURE 

Amplitude of pressure gradient 

Dimensionless amplitude of flow oscillation 

Amplitude correction factor for frequency response 
of the probe; Van Driest damping constant 

Area of electrode 

Factor defined in (3.43) 

Dimensionless time dependent concentration 
defined in (4.10) 

Concentration 

Bulk concentration 

Pipe diameter       ;■. 

Damping function in Van Driest formula 

Frequency 

Faraday's constant, 96,500 

Ratio of two consequent grid sizes 

Current flowing in the electrochemical cell 

Unit 

g/cm-sec 

cm 

mole/cm 

mole/cm 

cm 

1/sec 

abs-coul 
q-equivalent 

amp 

Von Karman constant 0.4; 
Time dependent component of mass transfer coefficient cm/sec 

Imaginary part of k 

Relaxation constant defined in (3.47) 

Real part of k 

Pseudosteady approximation of k cm/sec 

Coefficients defined in (3.46) 

Mass transfer coefficient cm/sec 

Mixing length cm 

Length of electode (in x direction) cm 
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Symbol Unit 

L      Stroke length of pulse generator cm 

n       Number of electrons transferred in electrochemical e 
reaction 

N       Number of total samples; 
Rate of mass transfer per unit area mole/cm -sec 

2 p       Pressure g/cm-sec 

r       Coordinate in radial direction cm 

r_      Pipe radius cm 

Re      Reynolds number 

Time dependent component of velocity 
gradient at the wall cm/sec 2 

s Streamwise velocity gradient fluctuation 
at the wall cm/sec 

2 
S Velocity gradient at the wall cm/sec 

Sc Schmidt number 

2 
S Streamwise velocity gradient at the wall cm/sec 

t Time sec 

T Dimensionless time defined in (3.53) 

u Streamwise velocity cm/sec 

u Friction velocity cm/sec 

u^ Bulk velocity in pipe cm/sec 

u Central velocity cm/sec 

U Dimensionless oscillation velocity 

U ' Dimensionless time averaged velocity 

V Radial velocity cm/sec 

w Spanwise velocity cm/sec 

W Width of the electrode 

X Coordinate in the flow direction 

X Dimensionless x (X = x/L) 

cm 

cm 
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Symbol Unit 

y Coordinate normal to the wall 6m 

+ +    * ■ 
y Dlmenslonless y. (y = yu /v) 

* *   + 1/3 +1/3 
y Dlmenslonless y. (y = y Sc  /L   ) 

Y Dlmenslonless Y. (Y = y/r„) 

Greek 
Symbol 

2 a       Diffusivity; cm /sec 
Wave nvimber of wavy surface 1/cm 

+ +    , * a Dlmenslonless wave number, (a = av/u ) 

g ,   Coefficient defined in (4.33) 

5 Concentration boundary thickness cm 

6 Stokes layer thickness cm 

6 Viscous sublayer thickness cm 

ri Dlmenslonless length defined in (4.6) 

9       Phase degree degree 

A.       Wave length of wavy surface cm 

y       Molecular viscosity g/cm-sec 

2 
V Kinematic viscosity • ,    cm /sec 

2 
V Turbulent eddy viscosity cm /sec 

3 
p       Density of fluid g/cm 

2 T       Shear stress g/cm-sec 

(t) 2 
T      Turbulent shear stress g/cm-sec 

2 
T       Wall shear stress g/cm-sec 
w 

T (0)    Dlmenslonless amplitude of wall shear stress, 
defined in (4.25) 

(})       Coefficient defined in (3.45) 

(|)„      Coefficient defined in (3.51) 
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Greek 
Symbol Unit 

to       Angular frequency 1/sec 

(jj       Dimensionless co (co = uv/u ) 

* *   + 1/3 oj       Dimensionless o) (to = to Sc   ) 

^ Frequency parameter (n = / w/v r^) 

Overline and brackets: 

Peoretical component 

—      Time average 

< >      Phase average 

I I      Amplitude 

Superscripts: 

+       Nondimensionlized with firction velocity u 
and kinematic viscosity v 

(t)     Turbulent component 
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